
Beanstalk BIP-39 Audit Report

Prepared by Cyfrin

Version 1.0

Lead Auditors

Giovanni Di Siena

Carlos Amarante

Assisting Auditors

Dacian

December 5, 2023

https://cyfrin.io
https://twitter.com/giovannidisiena
https://twitter.com/carlitox477
https://twitter.com/DevDacian

Contents

1 About Cyfrin 2

2 Disclaimer 2

3 Risk Classification 2

4 Protocol Summary 2

5 Audit Scope 3

6 Executive Summary 3

7 Findings 6
7.1 High Risk . 6

7.1.1 Failure to add modified facets and facets with modified dependencies to
bips::bipSeedGauge breaks the protocol . 6

7.1.2 The previous milestone stem should be scaled for use with the new gauge point system
which uses untruncated values moving forward . 9

7.2 Medium Risk . 11
7.2.1 Incorrect handling of decimals in LibLockedUnderlying::getPercentLockedUnderlying re-

sults in an incorrect value being returned, affecting the temperature and Bean to maxLP
gaugePoint per BDV ratio updates in each subsequent call to SeasonFacet::gm when un-
ripe asset supply < 10M . 11

7.2.2 Gauge point updates should be made considering the time-weighted average deposited LP
BDV rather than instantaneous at the time of Sunrise . 12

7.2.3 Gauge point constants in InitBipSeedGauge should be scaled by the ratio of deposited BDV 13
7.2.4 Incorrect calculation of unmigrated BDVs for use in InitBipSeedGauge::init 14

7.3 Low Risk . 16
7.3.1 Missing validation in LibWhitelist::verifyTokenInLibWhitelistedTokens 16
7.3.2 Potentially unsafe cast from negative int96 values . 16
7.3.3 Both reserves should be checked in LibWell::getWellPriceFromTwaReserves 17
7.3.4 Potential DoS of SeasonFacet::gm due to division by zero in LibGauge::updateGaugePoints 18
7.3.5 Small unripe token withdrawals don't decrease BDV and Stalk 18
7.3.6 Stalk rewards don't get burned for large partial withdrawals due to unsafe downcast 20

7.4 Informational . 23
7.4.1 Incorrect storage slot annotation in Storage::SiloSettings 23
7.4.2 LibLockedUnderlying regression might not be representative of the expected behaviour . . 23
7.4.3 Outdated Seed Gauge System documentation in PR and inline comments 24
7.4.4 Duplicated code between LibChop and LibUnripe . 24
7.4.5 Outdated reference to urBEAN3CRV Convert . 24
7.4.6 Miscellaneous NatSpec and inline comment errors . 26
7.4.7 Time-weighted average reserves should be read from the Beanstalk Pump in LibWell using

a try/catch block . 26
7.4.8 Use of average grown stalk per BDV is not correctly documented 26
7.4.9 Consolidate unnecessary code duplication in ConvertFacet::_withdrawTokens 27

7.5 Gas Optimization . 29
7.5.1 Break out of LibWhitelist loops early once the condition is met 29
7.5.2 LibBytes::packAddressAndStem calculated twice with the same parameters 29
7.5.3 LibTokenSilo::stemTipForToken calculated multiple times with same parameter 30
7.5.4 SiloFacet::transferDeposits should only call LibSiloPermit::_spendDepositAl-

lowance once . 30
7.5.5 Cache updated remaining amount to prevent extra storage read 31
7.5.6 Cache recapitalized amount to prevent extra storage read . 32

8 Appendix 33
8.1 Appendix A. Locked Underlying Differential Test . 33

1

8.2 Appendix B. Mainnet Rounding Error Tests . 35

2

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4 Protocol Summary

Beanstalk is a permissionless algorithmic stablecoin protocol built on Ethereum. The protocol uses a novel dynamic
peg maintenance mechanism to have the price of 1 BEAN (the Beanstalk stablecoin) continuously cross its peg
value of 1 USD without centralization or collateral requirements.

The BIP-39 upgrade specifically introduces the Seed Gauge System which is designed to dynamically adjust the
Grown Stalk distribution in each Season based on deposited BDV per whitelisted LP and Bean. To achieve this,
the protocol now considers four parameters when assessing the state of Beanstalk:

• L2SR: The USD value of the non-Bean assets trading against Bean that are whitelisted in the Silo. This
excludes the locked liquidity corresponding to liquidity backing unripe assets.

• Bean Price (deltaB): The deficit/surplus of Bean in its liquidity pools, according to the Curve and Well TWAP
oracles. This determines whether the price is above, at, or below peg.

• Change in Soil Demand: This is a measure of the ability of Beanstalk to attract a sufficient number of
creditors.

• Pod Rate: minted pods�paid pods
bean supply .

As a result, the protocol now considers 144 cases when updating the Temperature (interest paid for minting Pods)
and Gauge Point distribution (which determines how much Grown Stalk accrues to each asset) in each season. A
visual summary of the changes BIP-39 makes over the gm function can be found here.

Other notable changes introduced in the diff between the two commits referenced in the audit scope include:

• Support for Unripe lambda to lambda Conversions in the Silo has been added by introduction of a new
UNRIPE_TO_RIPE conversion type. Currently, Farmers can only Chop Unripe assets by forfeiting all their
associated Grown Stalk. This new conversion type simply Chops Unripe assets deposited in the Silo and
then deposits the corresponding underlying asset, accounting for its penalty and attached Grown Stalk.

• Beanstalk currently changes Temperature on an absolute scale, and does not support the ability to change
it on a relative scale. Support for changing Temperature on a relative scale has now been added.

3

https://cyfrin.io
https://cubeupload.com/im/carlitox477/GMsummary.png

• Currently, the total Deposited BDV stored on-chain does not account for Deposits that have not been migrated
to Silo V3. The remaining un-migrated BDV for each token at the BIP-38 migration block has been calculated,
incrementing totalDepositedBDV by the difference of the un-migrated BDV and the migrated BDV between
BIP excecutions. Corresponding modifications have been made to LibLegacyTokenSilo::_mowAndMigrate
to avoid double-counting this BDV when subsequent migrations to Silo V3 are made by Farmers with legacy
deposits.

5 Audit Scope

Cyfrin conducted an audit of Beanstalk based on the code present in the repository commit hash dfb418d, specifi-
cally the diff between this commit hash and 7606673 which largely pertains to the BIP-39 upgrade which introduces
the Seed Gauge System for dynamic incentivization of deposits for different whitelisted tokens based on the ratio
of deposited BDVs. Other changes introduced in the diff between these two commits, since the previous audit
performed by Cyfrin, are also considered in the scope of this audit.

The scope also includes a script for the calculation of the BDV of unmigrated deposits at a given block, present in
commit 120ae27, and code changes following EBIP remediations merged into original seed-gauge branch along
with other BIP-39 remediations at commit hash 5142b8f.

6 Executive Summary

Over the course of 26 days, the Cyfrin team conducted an audit on the Beanstalk BIP-39 smart contracts provided
by Beanstalk Farms. In this period, a total of 27 issues were found.

This review of the BIP-39 upgrade to Beanstalk yielded a number of bugs that would have affected the core
business logic and protocol accounting had they not been identified. Two high-severity findings related to the
upgrade process and InitBipSeedGauge initialization contract logic have been raised and should be addressed
to mitigate errors in Stalk accounting. Two of the medium-severity findings raised related to oversights in the
intialization of the Seed Gauge System while another pertains to the incorrect calculation of the locked underlying
amount which subsequently affects calculation of the Weather case in the Sunrise mechanism. A number of low-
severity issues have also been identified where it is possible for protocol invariants to be broken under certain
circumstances. While these do not appear to pose an immediate threat to the functioning of the protocol, it is very
often these edge cases, where the system fails to enforce some property that is intended, that give rise to bugs
that can be chained together for critical-severity attacks.

It is also important to note that the total deposited BDV migration calculation was provided on request after the
formal audit end date and as such has not been subject to a thorough review, although some issues were still
identified. Before BIP-38, the migrated BDV for Unripe LP was calculated based on the underlying BEAN:3CRV,
but after this is BEAN:ETH Well liquidity. Given that before BIP-38 there remained a large proportion of unmigrated
BDV, it is important to consider how to correctly calculate the new migrated BDV values, how the change of BDV
corresponding to the underlying asset in BDVFacet::unripeLPToBDV has been considered, and how these affect
the outstanding unmigrated BDV values used in BIP initialization.

The main points to take away from this engagement are as follows:

• Care should be taken by the Beanstalk Farms team to always add all modified facets and all facets whose
library dependencies have been modified to the relevant upgrade script. It is strongly recommended to
develop an upgrade simulation test suite to thoroughly test future upgrades so as to minimize the chance of
other similar errors in the upgrade process going unnoticed.

• There is currently insufficient testing of the new Seed Gauge System and BIP-39 upgrade process itself.
Extensive unit tests should be written to cover as many protocol states as possible, validating core properties
and behavior before, during and after the upgrade has executed.

• The breaking of protocol invariants is a serious issue that could lead to other higher-severity vulnerabilities
that have not yet been identified but may well exist if core properties do not hold. We urge the Beanstalk

4

https://github.com/AgrarianAlliance/Beanstalk/tree/dfb418d185cd93eef08168ccaffe9de86bc1f062
https://github.com/BeanstalkFarms/Beanstalk/commit/76066733bcddb944b9af8f29acf150c02a5b8437
https://github.com/AgrarianAlliance/Beanstalk/pull/4
https://github.com/BeanstalkFarms/Beanstalk/commit/120ae27b13a53bb65a11f7a09d5e27866f57a664
https://github.com/AgrarianAlliance/Beanstalk/commit/24638963aac9318bc175544e9d20dbbc70903a3e#diff-5142b8fec42b75bff55cf548ace9098b81a665efaaf7f13a2d87d2724fffce58
https://github.com/AgrarianAlliance/Beanstalk.git
https://bean.money

Farms team to consider fixing any instance where this is the case as soon as possible, in this case prior to
or as part of the BIP-39 upgrade.

Summary

Project Name Beanstalk BIP-39

Repository Beanstalk

Commit dfb418d185cd. . .

Audit Timeline Oct 16th - Nov 20th

Methods Manual Review, Unit Testing, Differen-
tial Testing

Issues Found

Critical Risk 0

High Risk 2

Medium Risk 4

Low Risk 6

Informational 9

Gas Optimizations 6

Total Issues 27

Summary of Findings

[H-1] Failure to add modified facets and facets with modified dependencies to
bips::bipSeedGauge breaks the protocol

Open

[H-2] The previous milestone stem should be scaled for use with the new
gauge point system which uses untruncated values moving forward

Open

[M-1] Incorrect handling of decimals in LibLockedUnderly-
ing::getPercentLockedUnderlying results in an incorrect value being
returned, affecting the temperature and Bean to maxLP gaugePoint per BDV
ratio updates in each subsequent call to SeasonFacet::gm when unripe
asset supply < 10M

Open

[M-2] Gauge point updates should be made considering the time-weighted
average deposited LP BDV rather than instantaneous at the time of Sunrise

Open

[M-3] Gauge point constants in InitBipSeedGauge should be scaled by the
ratio of deposited BDV

Open

[M-4] Incorrect calculation of unmigrated BDVs for use in Init-
BipSeedGauge::init

Open

[L-1] Missing validation in LibWhitelist::verifyTokenInLibWhitelistedTokensOpen

5

https://github.com/AgrarianAlliance/Beanstalk.git
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062

[L-2] Potentially unsafe cast from negative int96 values Open

[L-3] Both reserves should be checked in Lib-
Well::getWellPriceFromTwaReserves

Open

[L-4] Potential DoS of SeasonFacet::gm due to division by zero in Lib-
Gauge::updateGaugePoints

Open

[L-5] Small unripe token withdrawals don’t decrease BDV and Stalk Open

[L-6] Stalk rewards don’t get burned for large partial withdrawals due to unsafe
downcast

Open

[I-1] Incorrect storage slot annotation in Storage::SiloSettings Open

[I-2] LibLockedUnderlying regression might not be representative of the ex-
pected behaviour

Open

[I-3] Outdated Seed Gauge System documentation in PR and inline comments Open

[I-4] Duplicated code between LibChop and LibUnripe Open

[I-5] Outdated reference to urBEAN3CRV Convert Open

[I-6] Miscellaneous NatSpec and inline comment errors Open

[I-7] Time-weighted average reserves should be read from the Beanstalk
Pump in LibWell using a try/catch block

Open

[I-8] Use of average grown stalk per BDV is not correctly documented Open

[I-9] Consolidate unnecessary code duplication in ConvertFacet::_with-
drawTokens

Open

[G-1] Break out of LibWhitelist loops early once the condition is met Open

[G-2] LibBytes::packAddressAndStem calculated twice with the same param-
eters

Open

[G-3] LibTokenSilo::stemTipForToken calculated multiple times with same
parameter

Open

[G-4] SiloFacet::transferDeposits should only call LibSiloPermit::_-
spendDepositAllowance once

Open

[G-5] Cache updated remaining amount to prevent extra storage read Open

[G-6] Cache recapitalized amount to prevent extra storage read Open

6

7 Findings

7.1 High Risk

7.1.1 Failure to add modified facets and facets with modified dependencies to bips::bipSeedGauge breaks
the protocol

Description: At the time of a Diamond Proxy upgrade, modified facets are cut by their inclusion in the relevant
function within bips.js. are Currently, the bipSeedGauge function appears to be missing FieldFacet, BDVFacet,
ConvertFacet, and WhitelistFacet which have all been modified since the previous upgrade. Moreover, the
addition of facets with modifications to their libraries has not been taken into account, resulting in multiple issues
that break the protocol.

Impact: At first glance, given that it appears none of these facets or the libraries they use contain significant
modifications to the core business logic of Beanstalk, the impact could be considered low. However, given there
have been significant alterations to other libraries utilized by multiple facets, this is not the case. One of the more
severe issues involves the issuance of significantly increased amounts of Stalk than intended which therefore
breaks protocol accounting.

Proof of Concept: A list of all modified facets can be obtained by running the following command:

git diff --stat 7606673..dfb418d -- ".sol" ":\!protocol/test/" ":\!protocol/contracts/mocks/*" | grep
"Facet.sol",!

Output:

protocol/contracts/beanstalk/barn/UnripeFacet.sol | 360 +++++++++------
protocol/contracts/beanstalk/field/FieldFacet.sol | 4 +-
protocol/contracts/beanstalk/silo/BDVFacet.sol | 12 +-
protocol/contracts/beanstalk/silo/ConvertFacet.sol | 8 +-
.../contracts/beanstalk/silo/WhitelistFacet.sol | 79 +++-
.../contracts/beanstalk/sun/GaugePointFacet.sol | 39 ++
.../beanstalk/sun/SeasonFacet/SeasonFacet.sol | 120 +++--
.../sun/SeasonFacet/SeasonGettersFacet.sol | 248 ++++++++++

A list of all modified libraries can be obtained by running the following command:

git diff --stat 7606673..dfb418d -- "*.sol" ":\!protocol/test/*" ":\!protocol/contracts/mocks/*" | grep
"Lib.*\.sol",!

Output:

7

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/scripts/bips.js
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/scripts/bips.js#L198-L240

.../contracts/libraries/Convert/LibChopConvert.sol | 60 +++

.../contracts/libraries/Convert/LibConvert.sol | 42 +-

.../contracts/libraries/Convert/LibConvertData.sol | 3 +-

.../libraries/Convert/LibUnripeConvert.sol | 18 +-

.../contracts/libraries/Convert/LibWellConvert.sol | 3 +-

.../contracts/libraries/Curve/LibBeanMetaCurve.sol | 15 +

.../contracts/libraries/Curve/LibMetaCurve.sol | 61 ++-
protocol/contracts/libraries/LibCases.sol | 161 +++++++
protocol/contracts/libraries/LibChop.sol | 65 +++
protocol/contracts/libraries/LibEvaluate.sol | 297 ++++++++++++
protocol/contracts/libraries/LibFertilizer.sol | 2 +
protocol/contracts/libraries/LibGauge.sol | 330 +++++++++++++
protocol/contracts/libraries/LibIncentive.sol | 20 +-
.../contracts/libraries/LibLockedUnderlying.sol | 509 +++++++++++++++++++++
protocol/contracts/libraries/LibUnripe.sol | 180 ++++++--
.../libraries/Minting/LibCurveMinting.sol | 26 +-
.../contracts/libraries/Minting/LibWellMinting.sol | 30 +-
.../libraries/Oracle/LibBeanEthWellOracle.sol | 55 ---
.../contracts/libraries/Oracle/LibEthUsdOracle.sol | 3 +-
.../contracts/libraries/Oracle/LibUsdOracle.sol | 18 +-
.../libraries/Silo/LibLegacyTokenSilo.sol | 4 -
protocol/contracts/libraries/Silo/LibTokenSilo.sol | 18 +-
protocol/contracts/libraries/Silo/LibWhitelist.sol | 181 ++++++--
.../libraries/Silo/LibWhitelistedTokens.sol | 47 ++
protocol/contracts/libraries/Well/LibWell.sol | 217 ++++++++-

The following coded proof of concept has been written to demonstrate the broken Stalk accounting:

8

const { expect } = require('chai');
const { takeSnapshot, revertToSnapshot } = require("../utils/snapshot.js");
const { BEAN, BEAN_3_CURVE, UNRIPE_BEAN, UNRIPE_LP, WETH, BEAN_ETH_WELL, PUBLIUS,

ETH_USD_CHAINLINK_AGGREGATOR } = require('../utils/constants.js');,!

const { bipSeedGauge } = require('../../scripts/bips.js');
const { getBeanstalk } = require('../../utils/contracts.js');
const { impersonateBeanstalkOwner, impersonateSigner } = require('../../utils/signer.js');
const { ethers } = require('hardhat');

const { impersonateBean, impersonateEthUsdChainlinkAggregator} =
require('../../scripts/impersonate.js');,!

let silo, siloExit, bean

let grownStalkBeforeUpgrade, grownStalkAfterUpgrade
let snapshotId
let whitelistedTokenSnapshotBeforeUpgrade, whitelistedTokenSnapshotAfterUpgrade

const whitelistedTokens = [BEAN, BEAN_3_CURVE, UNRIPE_BEAN, UNRIPE_LP, BEAN_ETH_WELL]

const whitelistedTokensNames = ["BEAN", "BEAN:3CRV CURVE LP", "urBEAN", "urBEAN:WETH", "BEAN:WETH WELLS
LP"],!

const beanHolderAddress = "0xA9Ce5196181c0e1Eb196029FF27d61A45a0C0B2c"
let beanHolder

/**
* Async function
* @returns tokenDataSnapshot: Mapping from token address to (name,stemTip)
*/

const getTokenDataSnapshot = async()=>{
tokenDataSnapshot = new Map()

for(token of whitelistedTokens){
tokenDataSnapshot.set(token,{

name: whitelistedTokensNames[whitelistedTokens.indexOf(token)],
stemTip: await silo.stemTipForToken(token)

})
}
return tokenDataSnapshot

}

const forkMainnet = async()=>{
try {

await network.provider.request({
method: "hardhat_reset",
params: [

{
forking: {

jsonRpcUrl: process.env.FORKING_RPC,
blockNumber: 18619555-1 //a random semi-recent block close to Grown Stalk Per Bdv

pre-deployment,!

},
},

],
});

} catch(error) {
console.log('forking error in seed Gauge');
console.log(error);
return

}
}

const initializateContractsPointers = async(beanstalkAddress)=>{
tokenSilo = await ethers.getContractAt('TokenSilo', beanstalkAddress);
seasonFacet = await ethers.getContractAt('ISeasonFacet', beanstalkAddress);
siloFacet = await ethers.getContractAt('SiloFacet', beanstalkAddress);
silo = await ethers.getContractAt('ISilo', beanstalkAddress);
siloExit = await ethers.getContractAt('SiloExit', beanstalkAddress);
admin = await ethers.getContractAt('MockAdminFacet', beanstalkAddress);
well = await ethers.getContractAt('IWell', BEAN_ETH_WELL);
weth = await ethers.getContractAt('IWETH', WETH)
bean = await ethers.getContractAt('IBean', BEAN)
beanEth = await ethers.getContractAt('IWell', BEAN_ETH_WELL)
beanEthToken = await ethers.getContractAt('IERC20', BEAN_ETH_WELL)
unripeLp = await ethers.getContractAt('IERC20', UNRIPE_LP)
beanMetapool = await ethers.getContractAt('MockMeta3Curve', BEAN_3_CURVE)
chainlink = await ethers.getContractAt('MockChainlinkAggregator', ETH_USD_CHAINLINK_AGGREGATOR)

}

const impersonateOnchainSmartContracts = async() => {
publius = await impersonateSigner(PUBLIUS, true)
await impersonateEthUsdChainlinkAggregator()
await impersonateBean()
owner = await impersonateBeanstalkOwner()

}

const deposit = async(signer, tokenDataSnapshot) => {
await network.provider.send("hardhat_setBalance", [

signer.address,
"0x"+ethers.utils.parseUnits("1000",18).toString()

]);

beanToDeposit = await bean.balanceOf(signer.address)
// console.log(`Beans to deposit: ${ethers.utils.formatUnits(beanToDeposit,6)}`)
beanStemTip = tokenDataSnapshot.get(BEAN).stemTip
await siloFacet.connect(signer).deposit(BEAN,beanToDeposit,0) // 0 = From.EXTERNAL
return await tokenSilo.getDepositId(BEAN, beanStemTip,)

}

describe('Facet upgrade POC', function () {
before(async function () {

// Get users to impersonate
[user, user2] = await ethers.getSigners()

// fork mainnet
await forkMainnet()

// Replace on chain smart contract for testing
await impersonateOnchainSmartContracts()
beanHolder = await impersonateSigner(beanHolderAddress)

this.beanstalk = await getBeanstalk()

await initializateContractsPointers(this.beanstalk.address)

// Before doing anything we record some state variables that should hold
whitelistedTokenSnapshotBeforeUpgrade = await getTokenDataSnapshot()

// We do a deposit
depositId = await deposit(beanHolder,whitelistedTokenSnapshotBeforeUpgrade)

grownStalkBeforeUpgrade = await siloExit.balanceOfGrownStalk(beanHolder.address,BEAN)

// seed Gauge
await bipSeedGauge(true, undefined, false)
console.log("BIP-39 initiated\n")

whitelistedTokenSnapshotAfterUpgrade = await getTokenDataSnapshot(silo)
grownStalkAfterUpgrade = await siloExit.balanceOfGrownStalk(beanHolder.address,BEAN)

});

beforeEach(async function () {
snapshotId = await takeSnapshot()

});

afterEach(async function () {
await revertToSnapshot(snapshotId)

});

describe('init state POC', async function () {

it("Grown stalk backward compatibility",async()=>{
expect(grownStalkBeforeUpgrade).to.be.eq(grownStalkAfterUpgrade, "Grown stalk for a deposit after

BIP-39 upgrade is not the same than before the upgrade"),!

})

it('Stem tip backward compatibility',async()=>{
expect(whitelistedTokenSnapshotBeforeUpgrade.get(BEAN).stemTip).to.be.equal(whitelistedTokenSnaps c

hotAfterUpgrade.get(BEAN).stemTip,"BEAN stem tip is not the same than after the
upgrade")

,!

,!

expect(whitelistedTokenSnapshotBeforeUpgrade.get(BEAN_3_CURVE).stemTip).to.be.equal(whitelistedTo c

kenSnapshotAfterUpgrade.get(BEAN_3_CURVE).stemTip,"BEAN:3CRV Curve LP stem tip is not the same than
after the upgrade")

,!

,!

expect(whitelistedTokenSnapshotBeforeUpgrade.get(BEAN_ETH_WELL).stemTip).to.be.equal(whitelistedT c

okenSnapshotAfterUpgrade.get(BEAN_ETH_WELL).stemTip,"BEAN:3CRV Curve LP stem tip is not the same
than after the upgrade")

,!

,!

expect(whitelistedTokenSnapshotBeforeUpgrade.get(UNRIPE_BEAN).stemTip).to.be.equal(whitelistedTok c

enSnapshotAfterUpgrade.get(UNRIPE_BEAN).stemTip,"BEAN:3CRV Curve LP stem tip is not the same than
after the upgrade")

,!

,!

expect(whitelistedTokenSnapshotBeforeUpgrade.get(UNRIPE_LP).stemTip).to.be.equal(whitelistedToken c

SnapshotAfterUpgrade.get(UNRIPE_LP).stemTip,"BEAN:3CRV Curve LP stem tip is not the same than after
the upgrade")

,!

,!

})
})

})

9

As is shown by the reverting expectations, failure to add SiloFacet to the upgrade breaks the milestone stem
update and the grown stalk accounting.

If the solution for the issue relating to the previous milestone stem being scaled for use with the new gauge point
system (which uses untruncated values moving forward) is implemented without updating the SiloFacet, then the
previous LibTokenSilo::stemTipForToken implementation is used. This allows deposits performed before the
upgrade to receive significantly more grown stalk than intended.

Recommended Mitigation: Be sure to always add all modified facets and all facets whose library dependencies
have been modified to the upgrade script. It is highly recommended to develop an upgrade simulation test suite to
catch other similar errors in the upgrade process in the future.

7.1.2 The previous milestone stem should be scaled for use with the new gauge point system which uses
untruncated values moving forward

Description: Within the Beanstalk Silo, the milestone stem for a given token is the cumulative amount of grown
stalk per BDV for this token at the last stalkEarnedPerSeason update. Previously, the milestone stem was stored
in its truncated representation; however, the seed gauge system now stores the value in its untruncated form due
to the new granularity of grown stalk and the frequency with which these values are updated.

At the time of upgrade, the previous (truncated) milestone stem for each token should be scaled for use with the
gauge point system by multiplying up by a factor of 1e6. Otherwise, there will be a mismatch in decimals when
calculating the stem tip.

_stemTipForToken = s.ss[token].milestoneStem +
int96(s.ss[token].stalkEarnedPerSeason).mul(

int96(s.season.current).sub(int96(s.ss[token].milestoneSeason))
);

Impact: The mixing of decimals between the old milestone stem (truncated) and the new milestone stem (untrun-
cated, after the first gm call following the BIP-39 upgrade) breaks the existing grown stalk accounting, resulting in a
loss of grown stalk for depositors.

Proof of Concept: The previous implementation returns the cumulative stalk per BDV with 4 decimals:

function stemTipForToken(address token)
internal
view
returns (int96 _stemTipForToken)

{
AppStorage storage s = LibAppStorage.diamondStorage();

// SafeCast unnecessary because all casted variables are types smaller that int96.
_stemTipForToken = s.ss[token].milestoneStem +
int96(s.ss[token].stalkEarnedPerSeason).mul(

int96(s.season.current).sub(int96(s.ss[token].milestoneSeason))
).div(1e6); //round here

}

Which can be mathematically abstracted to:

StemTip(token) = getMilestonStem(token)+(current season�getMilestonStemSeason(token))�
stalkEarnedPerSeason(token)

106

This division by 106 happens because the stem tip previously had just 4 decimals. This division allows backward
compatibility by not considering the final 6 decimals. Therefore, the stem tip MUST ALWAYS have 4 decimals.

The milestone stem is now updated in each gm call so long as all LP price oracles pass their respective checks.
Notably, the milestone stem is now stored with 10 decimals (untruncated), hence why the second term of the
abstraction has omited the 10ˆ{6} division in LibTokenSilo::stemTipForTokenUntruncated.

10

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L388-L391
https://github.com/AgrarianAlliance/Beanstalk/blob/7606673/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L376-L391
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L265-L268
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L65-L67

However, if the existing milestone stem is not escalated by 106 then the addition performed during the upgrade and
in subsequent gm calls makes no sense. This is mandatory to be handled within the upgrade otherwise every part
of the protocol which calls LibTokenSilo.stemTipForToken will receive an incorrect value, except for BEAN:ETH
Well LP (given it was created after the Silo v3 upgrade).

Some instances where this function is used include:

• EnrootFacet::enrootDeposit

• EnrootFacet::enrootDeposits

• MetaFacet::uri

• ConvertFacet::_withdrawTokens

• LibSilo::__mow

• LibSilo::_removeDepositFromAccount

• LibSilo::_removeDepositsFromAccount

• Silo::_plant

• TokenSilo::_deposit

• TokenSilo::_transferDeposits

• LibLegacyTokenSilo::_mowAndMigrate

• LibTokenSilo::_mowAndMigrate

As can be observed, critical parts of the protocol are compromised, leading to further cascading issues.

Recommended Mitigation: Scale up the existing milestone stem for each token:

for (uint i = 0; i < siloTokens.length; i++) {
+ s.ss[siloTokens[i]].milestoneStem = int96(s.ss[siloTokens[i]].milestoneStem.mul(1e6));

11

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/EnrootFacet.sol#L91
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/EnrootFacet.sol#L131
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/metadata/MetadataFacet.sol#L36
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L129-148
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L382
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L545
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L604
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/SiloFacet/Silo.sol#L110
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/SiloFacet/TokenSilo.sol#L173
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/SiloFacet/TokenSilo.sol#L367
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibLegacyTokenSilo.sol#L306
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibLegacyTokenSilo.sol#L306

7.2 Medium Risk

7.2.1 Incorrect handling of decimals in LibLockedUnderlying::getPercentLockedUnderlying results in an
incorrect value being returned, affecting the temperature and Bean to maxLP gaugePoint per BDV
ratio updates in each subsequent call to SeasonFacet::gm when unripe asset supply < 10M

Description: Due to the Barn Raise and the associated Beans underlying Unripe assets, the number of tradable
Beans does not equal the total Bean supply. Within the calculation of L2SR, the term "locked liquidity" refers to
the portion of liquidity in the BEAN:ETH WELL that cannot be retrieved through chopping until the corresponding
Fertilizer is paid.

The exchange ratio for the corresponding underlying asset can be summarized in the following formula:

PaidFertilizer

MintedFertilizer
�
totalUnderlying(urAsset)

supply(urAsset)

The second factor indicates the amount of the underlying asset backing each unripe asset, while the first indicates
the distribution of the underlying asset based on the ratio of Fertilizer that is already paid.

When a user chops an unripe asset, it is burned in exchange for a penalized amount of the underlying asset. The
remaining underlying asset is now shared among the remaining unripe asset holders, meaning that if another user
tries to chop the same amount of unripe asset at a given recapitalization rate, they will receive a greater amount
of underlying asset.

For instance, assume that:

• 50% of the minted Fertilizer is paid

• A current supply of 70M

• An underlying amount of 22M

If Alice chops 1M unripe tokens:

1; 000; 000� 0:50�
22; 000; 000

70; 000; 000
=

1; 000; 000� 0:50� 0:31428 =

1; 000; 000� 0:50� 0:31428 =

1; 000; 000� 0:15714285 =

157; 142:85

If Bob then chops the same amount of tokens:

1; 000; 000� 0:50�
22; 000; 000� 157; 142:85

70; 000; 000� 1; 000; 000
=

1; 000; 000� 0:50�
21; 842; 857:15

69; 000; 000
=

1; 000; 000� 0:50�
21; 842; 857:15

69; 000; 000
=

1; 000; 000� 0:50� 0:3165 =

158; 281:57

Given that the assumption of chopping the total unripe asset supply in one step is highly unlikely, the Beanstalk
Farms team decided to perform an off-chain regression based on the average unripe asset per unripe asset
holder. This yields an approximation for the percentage locked underlying token per asset based on the current
unripe asset supply. An on-chain look-up table is used to retrieve the values of this regression; however, the
issue with its implementation lies in its failure to account for unripe token decimals when compared with the
inline conditional supply constants 1_000_000, 5_000_000, and 10_000_000 as the intervals on which the iterative

12

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibLockedUnderlying.sol#L61
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibLockedUnderlying.sol#L62
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibLockedUnderlying.sol#L63

simulation was performed. Given these constants are not a fixed-point representation of the numbers they are
intended to represent, comparison with the 6-decimal supply will be incorrect.

Impact: Given that unripe assets have 6 decimals, LibLockedUnderlying::getPercentLockedUnderlying will
tend to execute this conditional branch, producing an incorrect calculation of locked underlying whenever the
supply of the unripe asset is below 10M.

In the given scenario, this error would cascade into an incorrect calculation of L2SR, affecting how the temperature
and Bean to maxLP gaugePoint per BDV ratio should be updated in the call to Weather::calcCaseIdandUpdate
within SeasonFacet::gm.

Proof of Concept: A differential test (see Appendix A) was written to demonstrate this issue based on CSV
provided by the Beanstalk Farms team. Modifications to the CSV include:

• Adding headers: recapPercentage, urSupply, lockedPercentage

• Generate a CSV without whitespaces

• Round the first column to 3 decimals

• For the third column, delete e18 and round values to 18 decimals

Recommended Mitigation: Scale each inline constant that is compared against the unripe supply by 6 decimals.

For similar cases in the future, differential testing between the expected and actual outputs is effective in catching
bugs of this type which rely on pre-computed off-chain values.

7.2.2 Gauge point updates should be made considering the time-weighted average deposited LP BDV
rather than instantaneous at the time of Sunrise

Description: Prior to the introduction of the Seed Gauge System, the Grown Stalk per BDV for whitelisted assets
was static and could only be changed via governance. The Seed Gauge System now allows Beanstalk to target
an amount of Grown Stalk per BDV that should be issued per Season, with Gauge Points being introduced to
determine how the Grown Stalk issued that Season should be distributed between whitelisted LP tokens.

Gauge Points are updated every Season, when LibGauge::stepGauge is called within SeasonFacet::gm. This
Gauge Point update is currently performed by considering the instantaneous total deposited LP BDV at the time of
the gm call. However, this value can be subject to manipulation so the Seed Gauge System should instead use a
time-weighted average deposited LP BDV over the previous Season duration.

Impact: Given the Gauge Points for a given whitelisted LP can only increase/decrease by one point per Season,
and the Bean to max LP GP per BDV ratio is capped at 100%, the incentive to perform this attack is relatively low.
However, a large deposit immediately before the Sunrise call, and withdrawal immediately after, could nonetheless
result in manipulation meaning the Seed Gauge system does not work as intended.

Recommended Mitigation: Consider calculating time-weighted average deposited LP BDVs over the previous
Season duration rather than using an instantaneous value. The BDV to include in the calculation at each block
should be the one at the end of the previous block to avoid in-block manipulation. These values should be stored
and the update should be triggered whenever a function is called which modifies the total deposited BDV in any
way.

13

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibLockedUnderlying.sol#L286
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibLockedUnderlying.sol#L60
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibLockedUnderlying.sol#L63-L173
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L68
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L51
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L115-L122

7.2.3 Gauge point constants in InitBipSeedGauge should be scaled by the ratio of deposited BDV

Description: The current initial Gauge Point (GP) distribution is based solely on the grown stalk per season per
BDV for each LP, whereas it should be determined by considering the deposited BDV per LP.

Considering the following math which underlies the behavior of the gauge system:

depositedBDV Ratio(LP) =
silo:totalDepositedBDV (LP)

Pwlpt2Whitelisted LP Tokens

wlpt silo:totalDepositedBDV

GPs(LP) =

1. depositedBDV Ratio(LP) > LP:optimalDepositedBDV Ratio ^GPs�1(LP) � 1gp) GPs(LP) = 0

2. depositedBDV Ratio(LP) > LP:optimalDepositedBDV Ratio ^ GPs�1(LP) > 1gp) GPs(LP) =
GPs�1(LP)� 1gp

3. depositedBDV Ratio(LP) � LP:optimalDepositedBDV Ratio) GPs(LP) = GPs�1(LP) + 1gp

It can be seen that the formula relies on the previous GPs�1(LP), where s indicates the current season number
and deposited BDV ratio. Moreover, it is evident that the intention of this mechanism is to incentivize the Beanstalk
protocol to have a pre-defined optimal deposited BDV ratio for each LP. Consequently, the initial assignment of GP
should consider this intention.

Impact: An incorrect initial GP distribution can result in unintended initial behavior, which can take a significant
amount of time to rectify given that gauge points can only increase/decrease by one point per season as defined
in GaugePointFacet::defaultGaugePointFunction.

Proof of Concept:

// InitBipSeedGauge.sol
uint128 beanEthGp = uint128(s.ss[C.BEAN_ETH_WELL].stalkEarnedPerSeason) * 500 * 1e12;
uint128 bean3crvGp = uint128(s.ss[C.CURVE_BEAN_METAPOOL].stalkEarnedPerSeason) * 500 * 1e12

As observed, the initial GP assignment is determined by the stalk earned per season before BIP-39, with the
following values:

• BEAN:3CRV Curve LP: 3.25e6

• BEAN:ETH Well LP: 4.5e6

These values are not correlated with the total BDV deposited per LP. Consequently, the initial assignment of GP is
made with incorrect values.

Recommended Mitigation: Considering that one gauge point is equal to 1e18, the following modification should
be made:

// InitBipSeedGauge.sol
+ // BDV has 6 decimals
+ uint256 beanEthBDV = s.siloBalances[C.BEAN_ETH_WELL].depositedBdv
+ uint256 bean3crvBDV = s.siloBalances[C.CURVE_BEAN_METAPOOL].depositedBdv
+ uint256 lpTotalBDV = beanEthBDV + bean3crvGp
- uint128 beanEthGp = uint128(s.ss[C.BEAN_ETH_WELL].stalkEarnedPerSeason) * 500 * 1e12;
- uint128 bean3crvGp = uint128(beanEthBDV) * 500 * 1e12
+ // Assume 1 BDV = 1GP for initialization
+ uint128 beanEthGp = uint128(beanEthBDV * 10e6).div(lpTotalBDV) * 1e12;
+ uint128 bean3crvGp = uint128(bean3crvBDV * 10e6).div(lpTotalBDV) * 1e12

14

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/init/InitBipSeedGauge.sol#L68-L69
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/GaugePointFacet.sol#L26-L38
https://github.com/AgrarianAlliance/Beanstalk/blob/08ca0d7d495c94f2a4366fb7f99da561b74cc1c0/protocol/contracts/beanstalk/sun/GaugePointFacet.sol#L19

7.2.4 Incorrect calculation of unmigrated BDVs for use in InitBipSeedGauge::init

Description: The current values for the constants in InitBipSeedGauge::init are an estimation and not final-
ized. To correctly calculate the BDV, the Beanstalk Farms team simulates migrating all the remaining unmigrated
deposits at the block in which BIP-38 was executed such that the change of BDV corresponding to the underlying
asset in BDVFacet::unripeLPToBDV is considered and subject to the slippage incurred at the time of liquidity migra-
tion. The deposits.json file contains a list of outstanding deposits at the Silo V3 deployment block 17671557, so
the script considers all removeDeposit events after this point as deposits to be removed from the unmigrated BDV.
By filtering from the Enroot fix deployment block 17251905, if an account has removed its deposit after the Enroot
fix but before Silo V3 was deployed, this would improperly assume the deposits have been migrated when they
haven't. Additionally, given the script is forking mainnet at the BIP-38 execution block 18392690, it is not correct to
use 18480579 as the end block for event filtering.

The case has also been considered that, given the state changes will already have been applied, and assuming
the migration transaction isn't top/bottom of block, it might be desirable to fork/filter up to the block before BIP-
38 execution and check whether any migrations occurred before/after the migration transaction that need to be
considered manually. After further inspection of the block in which the BIP-38 upgrade took place, it appears this
is not necessary as no events were emitted.

An additional discrepancy in the unmigrated Bean BDV value was identified by the Beanstalk Farms team.
After Silo V3, the implementation of Sun::rewardToSilo increments the BDV by the amount of Bean
issued to the Silo, but all previously earned Beans are not considered. Therefore, the value returned by
SiloExit::totalEarnedBeans at the time of Silo V3 deployment should be added to the total.

Impact: The calculated unmigrated BDVs are incorrect, as shown below. The current implementation returns
values that are smaller than they should be, meaning the total deposited BDV will fail to consider some deposits
and be lower than intended.

Output of the current implementation:

unmigrated: {
'0x1BEA0050E63e05FBb5D8BA2f10cf5800B6224449': BigNumber { value: "3209210313166" },
'0x1BEA3CcD22F4EBd3d37d731BA31Eeca95713716D': BigNumber { value: "6680992571569" },
'0xBEA0000029AD1c77D3d5D23Ba2D8893dB9d1Efab': BigNumber { value: "304630107407" },
'0xc9C32cd16Bf7eFB85Ff14e0c8603cc90F6F2eE49': BigNumber { value: "26212521946" }

}

Corrected output:

unmigrated: {
'0x1BEA0050E63e05FBb5D8BA2f10cf5800B6224449': BigNumber { value: "3736196158417" },
'0x1BEA3CcD22F4EBd3d37d731BA31Eeca95713716D': BigNumber { value: "7119564766493" },
'0xBEA0000029AD1c77D3d5D23Ba2D8893dB9d1Efab': BigNumber { value: "689428296238" },
'0xc9C32cd16Bf7eFB85Ff14e0c8603cc90F6F2eE49': BigNumber { value: "26512602424" }

}

Recommended Mitigation: Apply the following diff:

// L645
- const END_BLOCK = 18480579;
+ const END_BLOCK = BLOCK_NUMBER;

// L811-812
- //get every transaction that emitted the RemoveDeposit event after block 17251905
+ //get every transaction that emitted the RemoveDeposit event after block 17671557
- let events = await queryEvents("RemoveDeposit(address,address,uint32,uint256)",

removeDepositInterface, 17251905); //update this block to latest block when running actual script,
in theory someone could have migrated meanwhile

,!

,!

+ let events = await queryEvents("RemoveDeposit(address,address,uint32,uint256)",
removeDepositInterface, 17671557);,!

Retrieve the amount of Beans previously issued to the Silo:

15

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/init/InitBipSeedGauge.sol#L35-L39
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L201-L204

cast call 0xC1E088fC1323b20BCBee9bd1B9fC9546db5624C5 "totalEarnedBeans()" --rpc-url ${FORKING_RPC}
--block "17671557",!

16

7.3 Low Risk

7.3.1 Missing validation in LibWhitelist::verifyTokenInLibWhitelistedTokens

Description: Prior to the introduction of LibWhitelistedToken.sol, Beanstalk did not have a way of iterating
through its whitelisted tokens. To mitigate against an upgrade where a new asset is whitelisted, but LibWhitelist-
edToken.sol is not updated, LibWhitelist::verifyTokenInLibWhitelistedTokens verifies that the token is both
in the correct array(s) and not in invalid arrays.

While LibWhitelistedTokens::getWhitelistedWellLpTokens is supposed to return a subset of whitelisted LP
tokens, this is not guaranteed. In this case, if the token is either Bean or an Unripe Token, the first else block within
LibWhitelist::verifyTokenInLibWhitelistedTokens should also check that the token is not in the whitelisted
Well LP token array.

Recommended Mitigation:

} else {
checkTokenNotInArray(token, LibWhitelistedTokens.getWhitelistedLpTokens());

+ checkTokenNotInArray(token, LibWhitelistedTokens.getWhitelistedWellLpTokens());
}

7.3.2 Potentially unsafe cast from negative int96 values

Description: Where calculations are performed on int96 values, for example when manipulating
stems in LibSilo::stalkReward, LibTokenSilo::grownStalkForDeposit, and LibToken-
Silo::calculateGrownStalkAndStem, Beanstalk uses the LibSafeMathSigned96 library. Based on
the invariant that the stem for a new deposit should never exceed the stem tip for a given token, casting these
values to uint256 is fine since the difference between the two stem values should never be negative. However, in
the event of a bug that violates this invariant, it could be possible to have a negative int96 value cast to a very
large uint256 value, potentially resulting in a huge amount of stalk being minted.

This issue is already sufficiently mitigated in LibTokenSilo::grownStalkForDeposit and it appears the instance
in LibTokenSilo::calculateGrownStalkAndStem can never reach this state. Additional logic should similarly be
added to LibSilo::stalkReward to ensure that the result of subtraction is positive and thus the cast to uint256 is
safe.

Impact: While it appears not currently exploitable, a bug in the calculation of the stem for a given deposit or stem
tip for a given token in LibSilo::stalkReward could result in the erroneous minting of a large amount of stalk.

Proof of Concept: The following forge test demonstrates this issue:

contract TestStemsUnsafeCasting is Test {
using LibSafeMathSigned96 for int96;

function stalkReward(int96 startStem, int96 endStem, uint128 bdv)
internal
view
returns (uint256)

{
int96 reward = endStem.sub(startStem).mul(int96(bdv));
console.logInt(reward);
console.logUint(uint128(reward));

return uint128(reward);
}

function test_stalk_reward() external {
uint256 reward = stalkReward(1200, 1000, 1337);
console.logUint(reward);

}
}

17

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibWhitelistedTokens.sol
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibWhitelist.sol#L196-L217
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L634-L638
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L422
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L452
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L452
https://github.com/AgrarianAlliance/Beanstalk/blob/08ca0d7d495c94f2a4366fb7f99da561b74cc1c0/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L419-L422

Recommended Mitigation: Add additional logic to safely perform the cast from int96 or otherwise handle the
case where the result of stem subtraction could be negative.

7.3.3 Both reserves should be checked in LibWell::getWellPriceFromTwaReserves

Description:

function getWellPriceFromTwaReserves(address well) internal view returns (uint256 price) {
AppStorage storage s = LibAppStorage.diamondStorage();
// s.twaReserve[well] should be set prior to this function being called.
// 'price' is in terms of reserve0:reserve1.
if (s.twaReserves[well].reserve0 == 0) {

price = 0;
} else {

price = s.twaReserves[well].reserve0.mul(1e18).div(s.twaReserves[well].reserve1);
}

}

Currently, LibWell::getWellPriceFromTwaReserves sets the price to zero if the time-weighted average reserves
of the zeroth reserve (for Wells, Bean) is zero. Given the implementation of LibWell::setTwaReservesForWell,
and that a Pump failure will return an empty reserves array, it does not appear possible to encounter the case
where one reserve can be zero without the other except for perhaps an exploit or migration scenario. Therefore,
whilst unlikely, it is best to but best to ensure both reserves are non-zero to avoid a potential division by zero
reserve1 when calculating the price as a revert here would result in DoS of SeasonFacet::gm.

function setTwaReservesForWell(address well, uint256[] memory twaReserves) internal {
AppStorage storage s = LibAppStorage.diamondStorage();
// if the length of twaReserves is 0, then return 0.
// the length of twaReserves should never be 1, but
// is added for safety.
if (twaReserves.length < 1) {

delete s.twaReserves[well].reserve0;
delete s.twaReserves[well].reserve1;

} else {
// safeCast not needed as the reserves are uint128 in the wells.
s.twaReserves[well].reserve0 = uint128(twaReserves[0]);
s.twaReserves[well].reserve1 = uint128(twaReserves[1]);

}
}

Additionally, to correctly implement the check identified by the comment in LibWell::setTwaReservesForWell,
the time-weighted average reserves in storage should be reset if the array length is less-than or equal-to 1.

Recommended Mitigation:

// LibWell::getWellPriceFromTwaReserves`
- if (s.twaReserves[well].reserve0 == 0) {
+ if (s.twaReserves[well].reserve0 == 0 || s.twaReserves[well].reserve1 == 0) {

price = 0;
} else {

// LibWell::setTwaReservesForWell
- if (twaReserves.length < 1) {
+ if (twaReserves.length <= 1) {

delete s.twaReserves[well].reserve0;
delete s.twaReserves[well].reserve1;

} else {

18

7.3.4 Potential DoS of SeasonFacet::gm due to division by zero in LibGauge::updateGaugePoints

There currently exists an edge case in LibGauge::updateGaugePoints where it is possible to unintentionally DoS
SeasonFacet::gm due to a potential division by zero. If there is only one newly whitelisted LP token in the Beanstalk
protocol which therefore has no deposited BDV, execution will revert, thus preventing Beanstalk from advancing to
the next Season. While it is unlikely that Beanstalk will encounter this issue so long as the existing whitelisted LP
tokens remain, there is a small possibility that this could be an issue in the event of some future liquidity migration
and so it should be handled accordingly.

...
// if there is only one pool, there is no need to update the gauge points.
if (whitelistedLpTokens.length == 1) {

// Assumes that only Wells use USD price oracles.
if (LibWell.isWell(whitelistedLpTokens[0]) && s.usdTokenPrice[whitelistedLpTokens[0]] == 0) {

return (maxLpGpPerBdv, lpGpData, totalGaugePoints, type(uint256).max);
}
uint256 gaugePoints = s.ss[whitelistedLpTokens[0]].gaugePoints;

+ if (s.siloBalances[whitelistedLpTokens[0]].depositedBdv != 0) {
lpGpData[0].gpPerBdv = gaugePoints.mul(BDV_PRECISION).div(

s.siloBalances[whitelistedLpTokens[0]].depositedBdv
);

+ }
return (

lpGpData[0].gpPerBdv,
lpGpData,
gaugePoints,
s.siloBalances[whitelistedLpTokens[0]].depositedBdv

);
}
...

7.3.5 Small unripe token withdrawals don't decrease BDV and Stalk

Description: For any whitelisted token where bdvCalc(amountDeposited) < amountDeposited, a user can de-
posit that token and then withdraw in small amounts to avoid decreasing BDV and Stalk. This is achieved by
exploiting a rounding down to zero precision loss in LibTokenSilo::removeDepositFromAccount:

// @audit small unripe bean withdrawals don't decrease BDV and Stalk
// due to rounding down to zero precision loss. Every token where
// `bdvCalc(amountDeposited) < amountDeposited` is vulnerable
uint256 removedBDV = amount.mul(crateBDV).div(crateAmount);

Impact: An attacker can withdraw deposited assets without decreasing BDV and Stalk. While the cost to perform
this attack is likely more than the value an attacker would stand to gain, the potential impact should definitely
be explored more closely especially considering the introduction of the Unripe Chop Convert in BIP-39 as this
could have other unintended consequences in relation to this bug (given that the inflated BDV of an Unripe Token
will persist once deposit is converted to its ripe counterpart, potentially allowing value to be extracted that way
depending on how this BDV is used/manipulated elsewhere).

The other primary consideration for this bug is that it breaks the mechanism that Stalk is supposed to be lost when
withdrawing deposited assets and keeps the totalDepositedBdv artificially high, violating the invariant that the
totalDepositedBdv value for a token should be the sum of the BDV value of all the individual deposits.

Proof of Concept: Add this PoC to SiloToken.test.js under the section describe("1 deposit, some", async
function () {:

19

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L84
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L248

it('audit small unripe bean withdrawals dont decrease BDV and Stalks', async function () {
let initialUnripeBeanDeposited = to6('10');
let initialUnripeBeanDepositedBdv = '2355646';
let initialTotalStalk = pruneToStalk(initialUnripeBeanDeposited).add(toStalk('0.5'));

// verify initial state
expect(await this.silo.getTotalDeposited(UNRIPE_BEAN)).to.eq(initialUnripeBeanDeposited);
expect(await this.silo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(initialUnripeBeanDepositedBdv);
expect(await this.silo.totalStalk()).to.eq(initialTotalStalk);

// snapshot EVM state as we want to restore it after testing the normal
// case works as expected
let snapshotId = await network.provider.send('evm_snapshot');

// normal case: withdrawing total UNRIPE_BEAN correctly decreases BDV & removes stalks
const stem = await this.silo.seasonToStem(UNRIPE_BEAN, '10');
await this.silo.connect(user).withdrawDeposit(UNRIPE_BEAN, stem, initialUnripeBeanDeposited,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited == 0
expect(await this.silo.getTotalDeposited(UNRIPE_BEAN)).to.eq('0');
// verify UNRIPE_BEAN totalDepositedBDV == 0
expect(await this.silo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq('0');
// verify silo.totalStalk() == 0
expect(await this.silo.totalStalk()).to.eq('0');

// restore EVM state to snapshot prior to testing normal case
await network.provider.send("evm_revert", [snapshotId]);

// re-verify initial state
expect(await this.silo.getTotalDeposited(UNRIPE_BEAN)).to.eq(initialUnripeBeanDeposited);
expect(await this.silo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(initialUnripeBeanDepositedBdv);
expect(await this.silo.totalStalk()).to.eq(initialTotalStalk);

// attacker case: withdrawing small amounts of UNRIPE_BEAN doesn't decrease
// BDV and doesn't remove stalks. This lets an attacker withdraw their deposits
// without losing Stalks & breaks the invariant that the totalDepositedBDV should
// equal the sum of the BDV of all individual deposits
let smallWithdrawAmount = '4';
await this.silo.connect(user).withdrawDeposit(UNRIPE_BEAN, stem, smallWithdrawAmount, EXTERNAL);

// verify UNRIPE_BEAN totalDeposited has been correctly decreased
expect(await this.silo.getTotalDeposited(UNRIPE_BEAN)).to.eq(initialUnripeBeanDeposited.sub(smallWi c

thdrawAmount));,!

// verify UNRIPE_BEAN totalDepositedBDV remains unchanged!
expect(await this.silo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(initialUnripeBeanDepositedBdv);
// verify silo.totalStalk() remains unchanged!
expect(await this.silo.totalStalk()).to.eq(initialTotalStalk);

});

Run with: npx hardhat test --grep "audit small unripe bean withdrawals dont decrease BDV and
Stalks".

Additional Mainnet fork tests have been written to demonstrate the presence of this bug in the current and post-
BIP-39 deployments of Beanstalk (see Appendix B).

Recommended Mitigation: LibTokenSilo::removeDepositFromAccount should revert if removedBDV == 0. A
similar check already exists in LibTokenSilo::depositWithBDV but is missing in removeDepositFromAccount()
when calculating removedBDV for partial withdrawals.

The breaking of protocol invariants could lead to other serious issues that have not yet been identified but may well

20

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L141

exist if core properties do not hold. We would urge the team to consider fixing this bug as soon as possible, prior
to or as part of the BIP-39 upgrade.

7.3.6 Stalk rewards don't get burned for large partial withdrawals due to unsafe downcast

Description: When calling SiloFacet::withdrawDeposit, it is possible that Stalk rewards are not burned for
large partial withdrawals as LibSilo::stalkReward will return 0 due to an unsafe downcast of removedBDV from
uint128 -> int96.

Impact: Stalk rewards don't get burned for large partial withdrawals.

Proof of Concept: Add to SiloToken.test.js under the section describe("deposit", function () {:

21

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L631-L636

describe("audit withdrawing deposited asset for large BDV value", function () {
// values found via fuzz testing
let beanDeposit = "79228162514264337593543950337";
let problemRemovedBdv = "79228162514264337593543950336";

beforeEach(async function () {
await this.season.teleportSunrise(10);
this.season.deployStemsUpgrade();

await this.siloToken.connect(user).approve(this.silo.address, beanDeposit);
await this.siloToken.mint(userAddress, beanDeposit);
await this.silo.connect(user).deposit(this.siloToken.address, beanDeposit, EXTERNAL);

});

it("audit stalk rewards not burned when withdrawing deposited asset for large BDV value", async
function () {,!

let initialTotalStalk = beanDeposit + "0000";

// verify initial state
expect(await this.silo.getTotalDeposited(this.siloToken.address)).to.eq(beanDeposit);
// siloToken has 1:1 BDV calc
expect(await this.silo.getTotalDepositedBdv(this.siloToken.address)).to.eq(beanDeposit);
expect(await this.silo.totalStalk()).to.eq(initialTotalStalk);

// fast forward to build up some stalk rewards
await this.season.teleportSunrise(20);

// snapshot EVM state as we want to restore it after testing the normal
// case works as expected
let snapshotId = await network.provider.send("evm_snapshot");

// normal case: withdraw the entire deposited amount
const stem = await this.silo.seasonToStem(this.siloToken.address, "10");
await this.silo.connect(user).withdrawDeposit(this.siloToken.address, stem, beanDeposit,

EXTERNAL);,!

// verify token.totalDeposited == 0
expect(await this.silo.getTotalDeposited(this.siloToken.address)).to.eq("0");
// verify token.totalDepositedBDV == 0
expect(await this.silo.getTotalDepositedBdv(this.siloToken.address)).to.eq("0");
// verify totalStalk == 0; both the initial stalk & stalk rewards were burned
expect(await this.silo.totalStalk()).to.eq("0");

// restore EVM state to snapshot prior to testing normal case
await network.provider.send("evm_revert", [snapshotId]);

// re-verify initial state
expect(await this.silo.getTotalDeposited(this.siloToken.address)).to.eq(beanDeposit);
// siloToken has 1:1 BDV calc
expect(await this.silo.getTotalDepositedBdv(this.siloToken.address)).to.eq(beanDeposit);
expect(await this.silo.totalStalk()).to.eq(initialTotalStalk);

// problem case: partial withdraw a precise amount causing
// by LibTokenSilo::removeDepositFromAccount() to calculate & return
// `removedBDV` to a known exploitable value. This causes LibSilo::stalkReward()
// to return 0 due to an unsafe downcast of `removedBDV` from uint128 -> int96
// meaning stalk rewards are not burned when the withdrawal occurs
await this.silo.connect(user).withdrawDeposit(this.siloToken.address, stem, problemRemovedBdv,

EXTERNAL);,!

// verify token.totalDeposited has been correcly decremented
expect(await this.silo.getTotalDeposited(this.siloToken.address)).to.eq("1");
// verify token.totalDepositedBDV == 1 as siloToken has 1:1 BDV calc
expect(await this.silo.getTotalDepositedBdv(this.siloToken.address)).to.eq("1");

// verify totalStalk == 10000 which fails and instead 10010 is returned.
//
// A return of 10010 is incorrect as there is only 1 BEAN left deposited
// so totalStalk should equal 10000 as the 10 stalk rewards should have
// been burned with the withdrawal, but this didn't happen due to the
// unsafe downcast in LibSilo::stalkReward() causing stalkReward() to
// return 0
expect(await this.silo.totalStalk()).to.eq("10000");

});
});

22

Recommended Mitigation: The withdrawal should revert if the result of the downcast overflows such that no Stalk
is burned. This could be achieved by performing a safe downcast and/or validating that a non-zero Stalk amount
is burned when withdrawing a non-zero BDV. LibTokenSilo::toInt96 is used in that contract for validating inputs
and casting.

23

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L478-L481

7.4 Informational

7.4.1 Incorrect storage slot annotation in Storage::SiloSettings

While it appears that the order struct members in storage have not changed, the storage slot annotation of Stor-
age::SiloSettings in AppStorage.sol is incorrect and should be updated as follows:

struct SiloSettings {
bytes4 selector; // 4

- uint32 stalkEarnedPerSeason; // 4 (16)
+ uint32 stalkEarnedPerSeason; // 4 (8)
- uint32 stalkIssuedPerBdv; // 4 (8)
+ uint32 stalkIssuedPerBdv; // 4 (12)
- uint32 milestoneSeason; // 4 (12)
+ uint32 milestoneSeason; // 4 (16)

int96 milestoneStem; // 12 (28)
bytes1 encodeType; // 1 (29)
// 3 bytes are left here.
uint128 gaugePoints; // -------- 16
bytes4 gpSelector; // 4 (20)
uint96 optimalPercentDepositedBdv; // 12 (32)

}

7.4.2 LibLockedUnderlying regression might not be representative of the expected behaviour

The percentage of locked liquidity, used in determining the L2SR in LibEvaluate, is obtained through the im-
plementation of an on-chain look-up table based on an off-chain linear regression. The assumption considered
acceptable for both Unripe Bean and Unripe LP is that 46,659 Unripe Tokens are chopped at each step. This num-
ber is calculated by dividing the number of Unripe Tokens by the number of Unripe Token Holders, resulting in an
average of 46,659 Unripe Tokens held per Farmer with a non-zero balance. 2000 is used as a slight overestimation
of the number of holders for both Unripe Bean and Unripe LP. An overestimation is acceptable because it results
in a more conservative L2SR.

However, this average might not accurately represent what is expected in each Chop. For example, consider a
scenario where 9 users each have 100,000 Unripe Tokens, and one user has 5.1 million Unripe Tokens.

Number of Unripe Tokens

Number of Unripe Token Holders
=

9� 100:000 + 5:100:000

10
=

900:000 + 5:100:000

10
=

6:000:000

10
= 600:000

In this case, the regression would consider that 600,000 Unripe Tokens are Chopped in each step, which can
actually be done by just one single user. Therefore, here it would be better to use the mode or median values
rather than the mean.

24

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/AppStorage.sol#L393-L404
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/AppStorage.sol#L393-L404

7.4.3 Outdated Seed Gauge System documentation in PR and inline comments

There are multiple instances in both the PR and inline comments where documentation of the Seed Gauge System
is outdated. For example:

• LibWhitelist::updateGaugeForToken does not allow the gauge points to be changed. This is contrary to
the comment in WhitelistFacet::updateGaugeForToken.

• The behavior of LibGauge::getBeanToMaxLpGpPerBdvRatioScaled is incorrectly documented as the reverse
of its actual behavior, which is f(0) = MIN_BEAN_MAX_LPGP_RATIO and f(100e18) = MAX_BEAN_MAX_LPGP_-
RATIO.

• Gauge Points are not normalized to 100e18, as stated in the PR.

• The MIN_BEAN_MAX_LP_GP_PER_BDV_RATIO constant is actually 50e18, not 25e18 as stated in the PR.

• gpPerBdv and beanToMaxLpGpPerBdvRatio both have 18 decimal precision, but there are multiple comments
which incorrectly state that these variables have 6 decimal precision.

7.4.4 Duplicated code between LibChop and LibUnripe

Duplicate versions of LibUnripe::_getPenalizedUnderlying and LibUnripe::isUnripe have been added to
LibChop. This is not necessary as the logic that executes is identical, so these duplicate versions can be removed
in favor of code reuse.

7.4.5 Outdated reference to urBEAN3CRV Convert

There are multiple instances in LibConvert::getMaxAmountIn and LibConvert::getAmountOut that reference
conversion to urBEAN3CRV and BEAN:3CRV. Since the underlying liquidity has now been migrated to the
BEAN:ETH Well, it is no longer possible to convert Unripe Bean or Unripe LP to BEAN:3CRV. Therefore, the
following diff should be applied:

25

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/WhitelistFacet.sol#L172
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L316-L329
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L32
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L153
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L210
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibGauge.sol#L215
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibUnripe.sol#L143-L151
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibUnripe.sol#L217-L223
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibChop.sol#L38-L64

function getMaxAmountIn(address tokenIn, address tokenOut)
internal
view
returns (uint256)

{
/// BEAN:3CRV LP -> BEAN
if (tokenIn == C.CURVE_BEAN_METAPOOL && tokenOut == C.BEAN)

return LibCurveConvert.lpToPeg(C.CURVE_BEAN_METAPOOL);

/// BEAN -> BEAN:3CRV LP
if (tokenIn == C.BEAN && tokenOut == C.CURVE_BEAN_METAPOOL)

return LibCurveConvert.beansToPeg(C.CURVE_BEAN_METAPOOL);

// Lambda -> Lambda
if (tokenIn == tokenOut)

return type(uint256).max;

// Bean -> Well LP Token
if (tokenIn == C.BEAN && tokenOut.isWell())

return LibWellConvert.beansToPeg(tokenOut);

// Well LP Token -> Bean
if (tokenIn.isWell() && tokenOut == C.BEAN)

return LibWellConvert.lpToPeg(tokenIn);

- // urBEAN3CRV Convert
+ // urBEAN:ETH Convert

if (tokenIn == C.UNRIPE_LP){
- // urBEAN:3CRV -> urBEAN
+ // urBEAN:ETH -> urBEAN

if(tokenOut == C.UNRIPE_BEAN)
return LibUnripeConvert.lpToPeg();

- // UrBEAN:3CRV -> BEAN:3CRV
+ // UrBEAN:ETH -> BEAN:ETH
- if(tokenOut == C.CURVE_BEAN_METAPOOL)
+ if(tokenOut == C.BEAN_ETH_WELL)

return type(uint256).max;
}

// urBEAN Convert
if (tokenIn == C.UNRIPE_BEAN){

- // urBEAN -> urBEAN:3CRV LP
+ // urBEAN -> urBEAN:ETH LP

if(tokenOut == C.UNRIPE_LP)
return LibUnripeConvert.beansToPeg();

// UrBEAN -> BEAN
if(tokenOut == C.BEAN)

return type(uint256).max;
}

revert("Convert: Tokens not supported");
}

function getAmountOut(address tokenIn, address tokenOut, uint256 amountIn)
internal
view
returns (uint256)

{
/// BEAN:3CRV LP -> BEAN
if (tokenIn == C.CURVE_BEAN_METAPOOL && tokenOut == C.BEAN)

return LibCurveConvert.getBeanAmountOut(C.CURVE_BEAN_METAPOOL, amountIn);

/// BEAN -> BEAN:3CRV LP
if (tokenIn == C.BEAN && tokenOut == C.CURVE_BEAN_METAPOOL)

return LibCurveConvert.getLPAmountOut(C.CURVE_BEAN_METAPOOL, amountIn);

- /// urBEAN:3CRV LP -> urBEAN
+ /// urBEAN:ETH LP -> urBEAN

if (tokenIn == C.UNRIPE_LP && tokenOut == C.UNRIPE_BEAN)
return LibUnripeConvert.getBeanAmountOut(amountIn);

- /// urBEAN -> urBEAN:3CRV LP
+ /// urBEAN -> urBEAN:ETH LP

if (tokenIn == C.UNRIPE_BEAN && tokenOut == C.UNRIPE_LP)
return LibUnripeConvert.getLPAmountOut(amountIn);

// Lambda -> Lambda
if (tokenIn == tokenOut)

return amountIn;

// Bean -> Well LP Token
if (tokenIn == C.BEAN && tokenOut.isWell())

return LibWellConvert.getLPAmountOut(tokenOut, amountIn);

// Well LP Token -> Bean
if (tokenIn.isWell() && tokenOut == C.BEAN)

return LibWellConvert.getBeanAmountOut(tokenIn, amountIn);

// UrBEAN -> Bean
if (tokenIn == C.UNRIPE_BEAN && tokenOut == C.BEAN)

return LibChopConvert.getConvertedUnderlyingOut(tokenIn, amountIn);

- // UrBEAN:3CRV -> BEAN:3CRV
+ // UrBEAN:ETH -> BEAN:ETH
- if (tokenIn == C.UNRIPE_LP && tokenOut == C.CURVE_BEAN_METAPOOL)
+ if (tokenIn == C.UNRIPE_LP && tokenOut == C.BEAN_ETH_WELL)

return LibChopConvert.getConvertedUnderlyingOut(tokenIn, amountIn);

revert("Convert: Tokens not supported");
}

26

7.4.6 Miscellaneous NatSpec and inline comment errors

The following NatSpec errors were identified:

• UnripeFacet::balanceOfPenalizedUnderlying NatSpec is incorrectly copied from Un-
ripeFacet::balanceOfUnderlying and should be modified for this particular function.

• The NatSpec of LibWell::getTwaReservesForWell is incorrect. It states that this function returns the USD /
TKN price stored in {AppStorage.usdTokenPrice}; however, this is actually the TKN / USD price and should
be updated accordingly.

• A comment explaining the implementation ofWeather::updateTemperature incorrectly references uint32(-
change) where it should instead be uint256(-change).

• A comment in LibCases explaining the behavior of the constants incorrectly states Bean2maxLpGpPerBdv set
to 10% of current value when it should be 50% of the current value.

• A comment in InitBipNewSilo has been changed to state the stemStartSeason is stored as a uint32 when
it is actually uint16.

• The NatSpec for the int8[32] cases member of AppStorage is outdated and along with the member itself
should be marked as deprecated in favor of bytes32[144] casesV2.

• There is a slight error in the case of TwaReserves in the NatSpec of AppStorage which should instead be
twaReserves.

• deprecated_beanEthPrice does not currently exist in the NatSpec of AppStorage. It should be added along
with an explanation of why this member is deprecated.

7.4.7 Time-weighted average reserves should be read from the Beanstalk Pump in LibWell using a
try/catch block

There are instances in LibWell::getTwaReservesFromBeanstalkPump and LibWell::getTwaLiquidityFromBeanstalkPump
where the time-weighted average reserves are read directly from the Beanstalk Pump. Unlike the implementation
in LibWellMinting::twaDeltaB, these functions do not wrap the call in a try/catch block. This should not affect
the Beanstalk Sunrise mechanism as the execution of LibWell::getTwaReservesFromStorageOrBeanstalkPump
will not reach the invocation of LibWell::getTwaReservesFromBeanstalkPump, since here the
reserves are already set in storage, but consider handling Pump failure gracefully so that LibEvalu-
ate::calcLPToSupplyRatio and SeasonGettersFacet::getBeanEthTwaUsdLiquidity (which is also used in
SeasonGettersFacet::getTotalUsdLiquidity) do not revert if there is an issue.

7.4.8 Use of average grown stalk per BDV is not correctly documented

The nature of the Gauge Point system is to distribute new stalk among whitelisted LP and BEAN deposits based
on their Bean-denominated value (BDV). The average grown stalk per BDV also takes into account the BDV of
unripe assets, linked to their respective underlying asset based on the following ratio:

paidFertilizer

mintedFertilzier
�
totalUnderlying(urAsset)

supply(urAsset)

While considering the BDV of unripe assets for the average grown stalk per BDV is mathematically correct, this
metric lacks practical sense due to a portion of the average grown stalk per BDV never being issued, causing it to
lose its semantic meaning.

// LibGauge::updateGrownStalkEarnedPerSeason
uint256 totalBdv = totalLpBdv.add(beanDepositedBdv);
...
uint256 newGrownStalk = uint256(s.seedGauge.averageGrownStalkPerBdvPerSeason)

.mul(totalBdv) // This BDV does not include unripe asset BDV

.div(BDV_PRECISION);

27

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/barn/UnripeFacet.sol#L208-L214
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/barn/UnripeFacet.sol#L194-L201
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/barn/UnripeFacet.sol#L194-L201
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Well/LibWell.sol#L189
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L90
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibCases.sol#L55
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L77
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/AppStorage.sol#L456
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/AppStorage.sol#L507
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/AppStorage.sol#L499
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/AppStorage.sol#L564
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Well/LibWell.sol#L242
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Well/LibWell.sol#L262
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Minting/LibWellMinting.sol#L160
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Well/LibWell.sol#L228
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibEvaluate.sol#L222
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibEvaluate.sol#L222
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonGettersFacet.sol#L227-L232
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonGettersFacet.sol#L238-L240

As can be seen, the clear intention of this calculation is to issue newGrownStalk for a season but only take into
account the BDV corresponding to whitelisted LPs and BEAN. Given that it is never issued, the rest of the grown
stalk per BDV could be considered implicitly burned. This design decision should be better documented, making it
clear how the unissued grown stalk is considered.

7.4.9 Consolidate unnecessary code duplication in ConvertFacet::_withdrawTokens

ConvertFacet::_withdrawTokens duplicates the following code in L119-132 then again in L137-151:

if (a.tokensRemoved.add(amounts[i]) < maxTokens) {
//keeping track of stalk removed must happen before we actually remove the deposit
//this is because LibTokenSilo.grownStalkForDeposit() uses the current deposit info
// @audit start duplicated code
depositBDV = LibTokenSilo.removeDepositFromAccount(

msg.sender,
token,
stems[i],
amounts[i]

);
bdvsRemoved[i] = depositBDV;
a.stalkRemoved = a.stalkRemoved.add(

LibSilo.stalkReward(
stems[i],
LibTokenSilo.stemTipForToken(token),
depositBDV.toUint128()

)
);
// @audit end duplicated code

} else {
amounts[i] = maxTokens.sub(a.tokensRemoved);

// @audit start duplicated code
depositBDV = LibTokenSilo.removeDepositFromAccount(

msg.sender,
token,
stems[i],
amounts[i]

);

bdvsRemoved[i] = depositBDV;
a.stalkRemoved = a.stalkRemoved.add(

LibSilo.stalkReward(
stems[i],

LibTokenSilo.stemTipForToken(token),
depositBDV.toUint128()

)
);
// @audit end duplicated code

}

Consider refactoring to remove the duplicated code by changing the if condition to only update amounts[i] when
required then perform the same processing that is currently on each if/else branch:

28

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L119-L132
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L137-L151

while ((i < stems.length) && (a.tokensRemoved < maxTokens)) {
if (a.tokensRemoved.add(amounts[i]) >= maxTokens) {

amounts[i] = maxTokens.sub(a.tokensRemoved);
}

//keeping track of stalk removed must happen before we actually remove the deposit
//this is because LibTokenSilo.grownStalkForDeposit() uses the current deposit info
depositBDV = LibTokenSilo.removeDepositFromAccount(

msg.sender,
token,
stems[i],
amounts[i]

);
bdvsRemoved[i] = depositBDV;
a.stalkRemoved = a.stalkRemoved.add(

LibSilo.stalkReward(
stems[i],
LibTokenSilo.stemTipForToken(token),
depositBDV.toUint128()

)
);

a.tokensRemoved = a.tokensRemoved.add(amounts[i]);
a.bdvRemoved = a.bdvRemoved.add(depositBDV);

depositIds[i] = uint256(LibBytes.packAddressAndStem(token, stems[i]));
i++;

}

29

7.5 Gas Optimization

7.5.1 Break out of LibWhitelist loops early once the condition is met

Once the given address is found in the array passed to LibWhitelist::checkTokenInArray or
LibWhitelist::checkTokenNotInArray, these functions could break early to avoid potentially unnecessary
additional loop iterations.

/**
* @notice Checks whether a token is in an array.
*/

function checkTokenInArray(address token, address[] memory array) private pure {
// verify that the token is in the array.
bool success;
for (uint i; i < array.length; i++) {

- if (token == array[i]) success = true;
+ if (token == array[i]) {
+ success = true;
+ break;
+ }

}
require(success, "Whitelist: Token not in whitelisted token array");

}

/**
* @notice Checks whether a token is in an array.
*/

function checkTokenNotInArray(address token, address[] memory array) private pure {
// verify that the token is not in the array.
bool success = true;
for (uint i; i < array.length; i++) {

- if (token == array[i]) success = false;
+ if (token == array[i]) {
+ success = false;
+ break;
+ }

} require(success, "Whitelist: Token in incorrect whitelisted token array");
}

7.5.2 LibBytes::packAddressAndStem calculated twice with the same parameters

LibSilo::_removeDepositsFromAccount calls LibBytes::packAddressAndStem after LibToken-
Silo::removeDepositFromAccount has already called the same function with the same parameters.

Consider refactoring to calculate LibBytes::packAddressAndStem once for each loop iteration
in LibSilo::_removeDepositsFromAccount, then pass the result as a parameter in the call to
LibTokenSilo::removeDepositFromAccount.

30

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L597
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L239

7.5.3 LibTokenSilo::stemTipForToken calculated multiple times with same parameter

LibTokenSilo::stemTipForToken is calculated multiple times with the same parameter in LibSilo::_removeDe-
positsFromAccount. This wastes gas since LibTokenSilo::stemTipForToken is always called with the same
token parameter during bulk withdrawals, performing 4 SLOAD operations on storage that does not change.

Consider calculating the stem tip once before entering the loop then pass the result as a parameter to stalkRe-
ward().

The same issue also occurs in ConvertFacet::_withdrawTokens.

7.5.4 SiloFacet::transferDeposits should only call LibSiloPermit::_spendDepositAllowance once

SiloFacet::transferDeposits currently loops through the input amounts array and calls LibSiloPermit::_-
spendDepositAllowance once for each amounts[i].

Instead, consider having a totalAmount stack variable that is incremented for each amounts[i] when looping
through the inputs. Then, after the initial loop is complete, call LibSiloPermit::_spendDepositAllowance with
totalAmount to save a significant number of storage reads & writes.

Consider this simplified example using Foundry:

uint256 s_allowance = 10;

function _spendAllowance(uint256 amount) private {s_allowance-=amount;}

function testBulkTransfer1() public {
// prepare input
uint256[10] memory amounts;
for(uint256 i=0; i<10; i++){amounts[i] = 1;}

// function implementation; update storage 1-by-1
for (uint256 i = 0; i < amounts.length; ++i) {

_spendAllowance(amounts[i]);
}

assert(s_allowance == 0);
}

function testBulkTransfer2() public {
// prepare input
uint256[10] memory amounts;
for(uint256 i=0; i<10; i++){amounts[i] = 1;}

// function implementation; cache total amount, update storage once
uint256 totalSpend;
for (uint256 i = 0; i < amounts.length; ++i) {

totalSpend += amounts[i];
}

_spendAllowance(totalSpend);

assert(s_allowance == 0);
}

[PASS] testBulkTransfer1() (gas: 5494)
[PASS] testBulkTransfer2() (gas: 3435)

31

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/Silo/LibSilo.sol#L604
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/silo/SiloFacet/SiloFacet.sol#L185

7.5.5 Cache updated remaining amount to prevent extra storage read

FundraiserFacet::fund should save the calculated remaining - amount then use it to set storage in L125 and
to check for completion in L128; this prevents re-reading storage again in L128. One easy solution is to reuse the
existing remaining stack variable:

remaining = remaining - amount; // Note: SafeMath is redundant here.
s.fundraisers[id].remaining = remaining;
emit FundFundraiser(msg.sender, id, amount);

// If completed, transfer tokens to payee and emit an event
if (remaining == 0) {

_completeFundraiser(id);
}

Consider this simplified example using Foundry:

uint256 private s_remainingDebt = 10;

function _onDebtRepayment() private {}

function testRemaining1() public {
uint256 repaymentAmount = 10;

// update storage
s_remainingDebt -= repaymentAmount;

// use storage read for check
if(s_remainingDebt == 0) {

_onDebtRepayment();
}

assert(s_remainingDebt == 0);
}

function testRemaining2() public {
uint256 repaymentAmount = 10;

// cache remaining debt
uint256 remainingDebt = s_remainingDebt - repaymentAmount;
// update storage
s_remainingDebt = remainingDebt;

// use cache for check
if(remainingDebt == 0) {

_onDebtRepayment();
}

assert(s_remainingDebt == 0);
}

[PASS] testRemaining1() (gas: 621)
[PASS] testRemaining2() (gas: 563)

32

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/field/FundraiserFacet.sol#L124
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/field/FundraiserFacet.sol#L125
https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/beanstalk/field/FundraiserFacet.sol#L128

7.5.6 Cache recapitalized amount to prevent extra storage read

LibFertilizer::remainingRecapitalization should cache s.recapitalized then use the cached stack vari-
able in L166-167 to prevent reading the same value a second twice from storage.

33

https://github.com/AgrarianAlliance/Beanstalk/blob/dfb418d185cd93eef08168ccaffe9de86bc1f062/protocol/contracts/libraries/LibFertilizer.sol#L166-L167

8 Appendix

8.1 Appendix A. Locked Underlying Differential Test

Locked underlying CSV:

Run test with yarn hardhat test --grep 'Unripe supply > 1.000.000':

34

const { expect } = require('chai');

const { ethers } = require('hardhat');
const csv = require('csv-parser')
const fs = require('fs')

const RECAP_PERCENTAGE_DECIMALS = 6
const UNRIPE_TOKENS_DECIMALS = 6
const LOCKED_PERCENTAGE_DECIMALS = 18
let expectedLockedRatios = new Map()
let libLockedUnderlyingFacet

/**
* CSV
* * MUST BE in protocol/test/BIP39/DifferentialTestingData/getLockedUnderlying.csv
* * CSV headers MUST BE recapPercentage,urSupply,lockedPercentage
* * recapPercentage MUST BE with just 6 decimals or less
* * urSupply MUST BE with just 6 decimals or less
* * lockedPercentage MUST BE with 18 decimals or less
* @returns expectedValues Mapping (unripeSupply, recapPercentage)=>ExpectedlockedRation
*/

const getExpectedOutputsMappingFromCSV = async()=>{
//const expectedValues = new Map()
await new Promise((resolve,reject)=>{

fs.createReadStream("./test/BIP39/DifferentialTestingData/getLockedUnderlying.csv")
.pipe(csv())
.on('data',(data)=>{

let recapPercentage =
ethers.utils.parseUnits(data.recapPercentage,RECAP_PERCENTAGE_DECIMALS),!

let unripeSupply = ethers.utils.parseUnits(data.urSupply,UNRIPE_TOKENS_DECIMALS)
let lockedPercentage =

ethers.utils.parseUnits(data.lockedPercentage,LOCKED_PERCENTAGE_DECIMALS),!

expectedLockedRatios.set({
unripeSupply: unripeSupply,
recapPercentage: recapPercentage

},lockedPercentage)
}).on('end',resolve).on('error',reject)

})

}

const getPercentageLockedUnderlying = async(unripeSupply, recapPercentage)=>{
let lockedLiqudityPercentageTx = await
libLockedUnderlyingFacet.getPercentLockedUnderlying(unripeSupply,recapPercentage),!

let lockedLiqudityPercentageReceipt = await lockedLiqudityPercentageTx.wait()
const [_,percentageEvent] = lockedLiqudityPercentageReceipt.events
const {percentage} = percentageEvent.args
return percentage

}

describe('LibLockedUnderlying.getPercentLockedUnderlying', async function () {

before(async()=>{
// Deploy library
const LibLockedUnderlyingFactory = await ethers.getContractFactory("LibLockedUnderlying")

const libLockedUnderlying = await LibLockedUnderlyingFactory.deploy()
await libLockedUnderlying.deployed()

// Deploy mock

LibLockedUnderlyingFacetFactory = await ethers.getContractFactory(
"MockLibLockedUnderlyingFacet",{

libraries:{
LibLockedUnderlying: libLockedUnderlying.address

}
})

libLockedUnderlyingFacet = await LibLockedUnderlyingFacetFactory.deploy()
await libLockedUnderlyingFacet.deployed()

await getExpectedOutputsMappingFromCSV()
})

it("Unripe supply < 1.000.000 returns 0",async()=>{
let unripeSupply = ethers.utils.parseUnits("1000000",UNRIPE_TOKENS_DECIMALS)
const percentage = await getPercentageLockedUnderlying(unripeSupply.sub(1),0)
expect(percentage).to.be.eq(0,`getPercentLockedUnderlying should return 0, instead returns

${percentage.toString()}`),!

})

it("Unripe supply > 1.000.000",async()=>{

// Get values from CSV
//getExpectedOutputsMappingFromCSV()
//console.log(expectedLockedRatios)

// considerations:
/*

urSupply provided has no decimals, needs to be added
recapPercentage should be adapted for testing
some recap percentage values from original CSV has been round up/down based on 2 decimal

precision,!

*/
unripeSupplyRecapPercentageJsonKeys = expectedLockedRatios.keys()
// console.log(unripeSupplyRecapPercentageJsonKeys)
for ((unripeSupplyRecapPercentageJson) of expectedLockedRatios.keys()){

//console.log(expectedLockedRatios.get(unripeSupplyRecapPercentageJson))
let expectedLockedRatio= expectedLockedRatios.get(unripeSupplyRecapPercentageJson)
let supply = unripeSupplyRecapPercentageJson.unripeSupply.add(1)
let recapPercentage = unripeSupplyRecapPercentageJson.recapPercentage.add(1)
let lockedRatio = await getPercentageLockedUnderlying(supply,recapPercentage)
//console.log(`Expected: ${expectedLockedRatio}, obtained: ${lockedRatio}`)
expect(lockedRatio).to.be.eq(expectedLockedRatio, `(

Unripe supply ${supply},
Recap percentage: ${unripeSupplyRecapPercentageJson.recapPercentage}):\n

\t Expected Locked underlying Percentage: ${expectedLockedRatio}\n
\t Obtained Locked underlying Percentage: ${lockedRatio}

`)
}

})
})

35

8.2 Appendix B. Mainnet Rounding Error Tests

Run all tests with yarn hardhat test --grep 'SiloToken: Mainnet Rounding Error':

36

const { expect } = require('chai');
const { mine } = require("@nomicfoundation/hardhat-network-helpers");
const { takeSnapshot, revertToSnapshot } = require("../utils/snapshot.js");
const { BEAN, BEAN_3_CURVE, UNRIPE_BEAN, UNRIPE_LP, WETH, BEAN_ETH_WELL, PUBLIUS,

ETH_USD_CHAINLINK_AGGREGATOR } = require('../utils/constants.js');,!

const { to6 } = require('../utils/helpers.js');
const { bipSeedGauge } = require('../../scripts/bips.js');
const { getBeanstalk } = require('../../utils/contracts.js');
const { impersonateBeanstalkOwner, impersonateSigner } = require('../../utils/signer.js');
const { ethers } = require('hardhat');
const { impersonateBean, impersonateEthUsdChainlinkAggregator} =

require('../../scripts/impersonate.js');,!

const { EXTERNAL } = require('../utils/balances.js');
//import { diamondFacetData, attachNewCodeToFacet } from '../utils/diamondFacet.js';

let seasonFacet, silo, siloFacet, tokenSilo, admin, well, weth, bean, beanEth, beanEthToken, unripeLp,
unripeBean, beanMetapool, chainlink, migrationFacet, diamondFacet, siloExit, convertFacet, bdvFacet,!

let snapshotId

const FORKING_BLOCK = 18577183 - 1 // Block before this migration:
https://etherscan.io/tx/0xd056dff2e0ec7609aa32de780a81ed27bcb7a0de6f6d8814a005a2889c2b804a,!

let legacyUnripeHolderAddress = "0xf84f39554247723c757066b8fd7789462ac25894"
let unripeBeanHolderAddress = "0xa82240Bb0291A8Ef6e46a4f6B8ABF4737B0b5257"

let inputData = {
"account": "0xf84f39554247723c757066b8fd7789462ac25894",
"tokens": [

"0x1bea0050e63e05fbb5d8ba2f10cf5800b6224449",
"0x1bea3ccd22f4ebd3d37d731ba31eeca95713716d",
"0xbea0000029ad1c77d3d5d23ba2d8893db9d1efab"

],
"seasons": [

[
1064,
1281,
1282,
1766,
1767,
2454,
2626,
3367,
5122,
6022,
6074

],
[1044],
[10795]

],
"amounts": [

[
89681039,
23603649,
2260255,
17652540,
33361024,
241605139,
200065458,
859438810,
47598426,
23059093917,
1728409109

],
[1232458169],
[286296869]

],
"stalkDiff": 23976,
"seedsDiff": 12,
"proof":[

"0x82bcb74dbaff09a5860d19cd2a304d86288561680590b7e0b39b984b77834e82",
"0xd8835b46ad7279ffa1caa75d717580eeb7e89aab9f5c5b288fc6e2f6fce3aa4e",
"0xc880f32937c3d4a613c6e62f07dd5dca62ac6ada86714034e5d1aa66d82ea780",
"0xa4c81e9ce38cd2b08691ed959e226ac7022a8b74c610aa451b25e3423aeb0ccf",
"0x2734746c96992316ceb8f73982d31342f09b083b1cfc854c6bf278ac14673b1b",
"0x3ad846d5b20505da901150e4b8405ef09489e505657b6b4868bb453f2319405c",
"0x0531d41dd6ca5c98530cb26ac146c26e90b4b8a51fa781fca56d06850556a315",
"0x595b2c7bc80aafa26f42fabd852184b2a38bf141545e7f8e407a1ffeae4d20f3",
"0xfbeba7852ff3fb8336987ffc1b1e014b59012a1b52fefa7687af5303ca33e616",
"0xb8b1c46d6852b2829d7cdd80171c8de5352c84a5c660a971f58a556f6a4d17f5"

]
}

const forkMainnet = async()=>{
try {

await network.provider.request({
method: "hardhat_reset",
params: [

{
forking: {

jsonRpcUrl: process.env.FORKING_RPC,
blockNumber: FORKING_BLOCK

},
},

],
});

} catch(error) {
console.log('forking error in seed Gauge');
console.log(error);
return

}
}

const impersonateOnchainSmartContracts = async()=>{
publius = await impersonateSigner(PUBLIUS, true)
await impersonateEthUsdChainlinkAggregator()
await impersonateBean()
owner = await impersonateBeanstalkOwner()

}

const initializateContractsPointers = async(beanstalkAddress)=>{
diamondFacet = await ethers.getContractAt('DiamondLoupeFacet', beanstalkAddress);
migrationFacet = await ethers.getContractAt('IMigrationFacet', beanstalkAddress);
seasonFacet = await ethers.getContractAt('ISeasonFacet', beanstalkAddress);
convertFacet = await ethers.getContractAt('ConvertFacet', beanstalkAddress);
siloExit = await ethers.getContractAt('SiloExit', beanstalkAddress);
tokenSilo = await ethers.getContractAt('TokenSilo', beanstalkAddress);
silo = await ethers.getContractAt('ISilo', beanstalkAddress);
siloFacet = await ethers.getContractAt('SiloFacet', beanstalkAddress);
admin = await ethers.getContractAt('MockAdminFacet', beanstalkAddress);
bdvFacet = await ethers.getContractAt('BDVFacet', beanstalkAddress)
well = await ethers.getContractAt('IWell', BEAN_ETH_WELL);
weth = await ethers.getContractAt('IWETH', WETH)
bean = await ethers.getContractAt('IBean', BEAN)
beanEth = await ethers.getContractAt('IWell', BEAN_ETH_WELL)
beanEthToken = await ethers.getContractAt('IERC20', BEAN_ETH_WELL)
unripeLp = await ethers.getContractAt('IERC20', UNRIPE_LP)
unripeBean = await ethers.getContractAt('IERC20', UNRIPE_BEAN)
beanMetapool = await ethers.getContractAt('MockMeta3Curve', BEAN_3_CURVE)
chainlink = await ethers.getContractAt('MockChainlinkAggregator', ETH_USD_CHAINLINK_AGGREGATOR)

}

describe('SiloToken: Mainnet Rounding Error', function () {
before(async function () {

// Get users to impersonate
[user, user2] = await ethers.getSigners()

// fork mainnet
await forkMainnet()

// Replace on chain smart contract for testing
await impersonateOnchainSmartContracts()

// Impersonate legacy unripe holder
legacyUnripeHolder = await impersonateSigner(legacyUnripeHolderAddress, true)

// Impersonate unripe BEAN holder
unripeBeanHolder = await impersonateSigner(unripeBeanHolderAddress, true)

this.beanstalk = await getBeanstalk()
await initializateContractsPointers(this.beanstalk.address)

// Before doing anything we record some state variables that should hold
// console.log(`Stalk before bip-39 upgrade: ${ethers.utils.formatUnits(await
siloExit.balanceOfStalk(legacyUnripeHolderAddress),decimals.stalk)}`),!

});

beforeEach(async function () {
snapshotId = await takeSnapshot()

});

afterEach(async function () {
await revertToSnapshot(snapshotId)

});

it("Unripe Bean small withdrawals - mainnet, new unripe bean depositor",async()=>{
const totalDepositedBefore = await tokenSilo.getTotalDeposited(UNRIPE_BEAN);
const totalDepositedBdvBefore = await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN);
const totalStalkBefore = await siloExit.totalStalk();
console.log(`Total Stalk before deposit: ${totalStalkBefore}`);

const depositedBdvBefore = await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN);,!

const depositAmount = to6('10000');
const depositAmountBdv = await bdvFacet.unripeBeanToBDV(depositAmount);
await unripeBean.connect(unripeBeanHolder).approve(siloFacet.address, depositAmount);
const tx = await siloFacet.connect(unripeBeanHolder).deposit(UNRIPE_BEAN, depositAmount, EXTERNAL);
const receipt = await tx.wait();
const depositedBdvAfterDeposit = await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN);,!

const totalDepositedBdvAfterDeposit = await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN);
const totalStalkAfterDeposit = await siloExit.totalStalk();
expect(await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN)).to.eq(depositedBdvBefore.add(depositAmountBdv));,!

console.log(`Total Stalk after deposit of ${depositAmount} with a BDV of ${depositAmountBdv}:
${totalStalkAfterDeposit}`);,!

const totalDepositedAfter = await tokenSilo.getTotalDeposited(UNRIPE_BEAN);
expect(totalDepositedAfter).to.eq(totalDepositedBefore.add(depositAmount));

// snapshot EVM state as we want to restore it after testing the normal case works as expected
let snapshotBeforeWithdraw = await network.provider.send('evm_snapshot');

// normal case: withdrawing total UNRIPE_BEAN correctly decreases BDV & removes stalks
const stem = await siloExit.stemTipForToken(UNRIPE_BEAN);
expect(stem).to.eq('0');

await siloFacet.connect(unripeBeanHolder).withdrawDeposit(UNRIPE_BEAN, stem, depositAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited == totalDepositedBefore
expect(await tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedBefore);
// verify UNRIPE_BEAN totalDepositedBDV == totalDepositedBDV
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvBefore);
expect(await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN)).to.eq(depositedBdvBefore);,!

// verify siloExit.totalStalk()
console.log(`total stalk after withdraw: ${await siloExit.totalStalk()}`);
// restore EVM state to snapshot prior to testing normal case
await network.provider.send("evm_revert", [snapshotBeforeWithdraw]);

// attacker case: withdrawing small amounts of UNRIPE_BEAN doesn't decrease
// BDV and doesn't remove stalks. This lets an attacker withdraw their deposits
// without losing Stalks & breaks the invariant that the totalDepositedBDV should
// equal the sum of the BDV of all individual deposits
let smallWithdrawAmount = '4';
await siloFacet.connect(unripeBeanHolder).withdrawDeposit(UNRIPE_BEAN, stem, smallWithdrawAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited has been correctly decreased
expect(await
tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedAfter.sub(smallWithdrawAmount));,!

// verify UNRIPE_BEAN totalDepositedBDV remains unchanged!
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvAfterDeposit);
expect(await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN)).to.eq(depositedBdvAfterDeposit);,!

// verify siloExit.totalStalk() remains unchanged!
expect(await siloExit.totalStalk()).to.eq(totalStalkAfterDeposit);

})

it("Unripe Bean small withdrawals - mainnet, migrated unripe bean depositor",async()=>{
// perform migration
await migrationFacet.connect(legacyUnripeHolder).mowAndMigrate(...Object.values(inputData))
console.log("Migration executed")

const totalDepositedBefore = await tokenSilo.getTotalDeposited(UNRIPE_BEAN);
const totalDepositedBdvBefore = await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN);
const totalStalkBefore = await siloExit.totalStalk();
const depositedBdvBefore = await siloExit.balanceOfDepositedBdv(legacyUnripeHolderAddress,
UNRIPE_BEAN);,!

console.log(`depositedBdvBefore: ${depositedBdvBefore}`);
console.log(`Total Stalk before deposit: ${totalStalkBefore}`);

// snapshot EVM state as we want to restore it after testing the normal case works as expected
let snapshotBeforeWithdraw = await network.provider.send('evm_snapshot');

// normal case: withdrawing total UNRIPE_BEAN correctly decreases BDV & removes stalks
const stem = await siloExit.stemTipForToken(UNRIPE_BEAN);
expect(stem).to.eq('0');

const withdrawAmount = to6('10')
await siloFacet.connect(legacyUnripeHolder).withdrawDeposit(UNRIPE_BEAN, stem, withdrawAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited == totalDepositedBefore
expect(await tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedBefore);
// verify UNRIPE_BEAN totalDepositedBDV == totalDepositedBDV
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvBefore);
// verify siloExit.totalStalk()
console.log(`total stalk after withdraw: ${await siloExit.totalStalk()}`);

// restore EVM state to snapshot prior to testing normal case
await network.provider.send("evm_revert", [snapshotBeforeWithdraw]);

// attacker case: withdrawing small amounts of UNRIPE_BEAN doesn't decrease
// BDV and doesn't remove stalks. This lets an attacker withdraw their deposits
// without losing Stalks & breaks the invariant that the totalDepositedBDV should
// equal the sum of the BDV of all individual deposits
let smallWithdrawAmount = '4';
await siloFacet.connect(legacyUnripeHolder).withdrawDeposit(UNRIPE_BEAN, stem, smallWithdrawAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited has been correctly decreased
expect(await
tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedAfter.sub(smallWithdrawAmount));,!

// verify UNRIPE_BEAN totalDepositedBDV remains unchanged!
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvBefore);
// verify siloExit.totalStalk() remains unchanged!
expect(await siloExit.totalStalk()).to.eq(totalStalkBefore);

})

it("Unripe Bean small withdrawals - mainnet, new unripe bean depositor after bip-39",async()=>{
console.log("Initiating BIP-39 upgrade:\n");
await bipSeedGauge(true, undefined, false);
console.log("BIP-39 completed\n");

const totalDepositedBefore = await tokenSilo.getTotalDeposited(UNRIPE_BEAN);
const totalDepositedBdvBefore = await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN);
const totalStalkBefore = await siloExit.totalStalk();
console.log(`Total Stalk before deposit: ${totalStalkBefore}`);

const depositedBdvBefore = await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN);,!

const depositAmount = to6('10000');
const depositAmountBdv = await bdvFacet.unripeBeanToBDV(depositAmount);
await unripeBean.connect(unripeBeanHolder).approve(siloFacet.address, depositAmount);
const tx = await siloFacet.connect(unripeBeanHolder).deposit(UNRIPE_BEAN, depositAmount, EXTERNAL);
const receipt = await tx.wait();
const totalDepositedBdvAfterDeposit = await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN);
expect(totalDepositedBdvAfterDeposit.gt(totalDepositedBdvBefore)).to.be.true;
const totalStalkAfterDeposit = await siloExit.totalStalk();
expect(await siloExit.balanceOfDepositedBdv(unripeBeanHolderAddress,
UNRIPE_BEAN)).to.eq(depositedBdvBefore.add(depositAmountBdv));,!

console.log(`Total Stalk after deposit of ${depositAmount} with a BDV of ${depositAmountBdv}:
${totalStalkAfterDeposit}`);,!

const totalDepositedAfter = await tokenSilo.getTotalDeposited(UNRIPE_BEAN);
expect(totalDepositedAfter).to.eq(totalDepositedBefore.add(depositAmount));

// mine some blocks so that stalk accrues:
await mine(10000, { interval: 12 });
await seasonFacet.sunrise();

// snapshot EVM state as we want to restore it after testing the normal case works as expected
let snapshotBeforeWithdraw = await network.provider.send('evm_snapshot');

// normal case: withdrawing total UNRIPE_BEAN correctly decreases BDV & removes stalks
const stem = await siloExit.stemTipForToken(UNRIPE_BEAN);
expect(stem).to.eq('0');

await siloFacet.connect(unripeBeanHolder).withdrawDeposit(UNRIPE_BEAN, stem, depositAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited == totalDepositedBefore
expect(await tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedBefore);
// verify UNRIPE_BEAN totalDepositedBDV == totalDepositedBDV
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvBefore);
// verify siloExit.totalStalk()
console.log(`total stalk after withdraw: ${await siloExit.totalStalk()}`);

// restore EVM state to snapshot prior to testing normal case
await network.provider.send("evm_revert", [snapshotBeforeWithdraw]);

// attacker case: withdrawing small amounts of UNRIPE_BEAN doesn't decrease
// BDV and doesn't remove stalks. This lets an attacker withdraw their deposits
// without losing Stalks & breaks the invariant that the totalDepositedBDV should
// equal the sum of the BDV of all individual deposits
const smallWithdrawAmount = '4';
const smallWithdrawAmountBdv = await bdvFacet.unripeBeanToBDV(smallWithdrawAmount);
await siloFacet.connect(unripeBeanHolder).withdrawDeposit(UNRIPE_BEAN, stem, smallWithdrawAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited has been correctly decreased
expect(await
tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedAfter.sub(smallWithdrawAmount));,!

// verify UNRIPE_BEAN totalDepositedBDV remains unchanged!
console.log(`small withdraw amount bdv is zero: ${smallWithdrawAmountBdv == 0}`);
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvAfterDeposit);
// verify siloExit.totalStalk() remains unchanged!
expect(await siloExit.totalStalk()).to.eq(totalStalkAfterDeposit);

})

it("Unripe Bean small withdrawals - mainnet, migrated unripe bean depositor after bip-39",async()=>{
// perform migration
await migrationFacet.connect(legacyUnripeHolder).mowAndMigrate(...Object.values(inputData))
console.log("Migration executed")

console.log("Initiating BIP-39 upgrade:\n");
await bipSeedGauge(true, undefined, false);
console.log("BIP-39 completed\n");

await mine(10000, { interval: 12 });
await seasonFacet.sunrise();

const totalDepositedBefore = await tokenSilo.getTotalDeposited(UNRIPE_BEAN);
const totalDepositedBdvBefore = await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN);
const totalStalkBefore = await siloExit.totalStalk();
const depositedBdvBefore = await siloExit.balanceOfDepositedBdv(legacyUnripeHolderAddress,
UNRIPE_BEAN);,!

console.log(`Total Stalk before deposit: ${totalStalkBefore}`);

// snapshot EVM state as we want to restore it after testing the normal case works as expected
let snapshotBeforeWithdraw = await network.provider.send('evm_snapshot');

// normal case: withdrawing total UNRIPE_BEAN correctly decreases BDV & removes stalks
const stem = await siloExit.stemTipForToken(UNRIPE_BEAN);
expect(stem).to.eq('0');

const withdrawAmount = to6('10')
await siloFacet.connect(legacyUnripeHolder).withdrawDeposit(UNRIPE_BEAN, stem, withdrawAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited == totalDepositedBefore
expect(await tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedBefore);
// verify UNRIPE_BEAN totalDepositedBDV == totalDepositedBDV
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvBefore);
// verify siloExit.totalStalk()
console.log(`total stalk after withdraw: ${await siloExit.totalStalk()}`);

// restore EVM state to snapshot prior to testing normal case
await network.provider.send("evm_revert", [snapshotBeforeWithdraw]);

// attacker case: withdrawing small amounts of UNRIPE_BEAN doesn't decrease
// BDV and doesn't remove stalks. This lets an attacker withdraw their deposits
// without losing Stalks & breaks the invariant that the totalDepositedBDV should
// equal the sum of the BDV of all individual deposits
let smallWithdrawAmount = '4';
await siloFacet.connect(legacyUnripeHolder).withdrawDeposit(UNRIPE_BEAN, stem, smallWithdrawAmount,
EXTERNAL);,!

// verify UNRIPE_BEAN totalDeposited has been correctly decreased
expect(await
tokenSilo.getTotalDeposited(UNRIPE_BEAN)).to.eq(totalDepositedAfter.sub(smallWithdrawAmount));,!

// verify UNRIPE_BEAN totalDepositedBDV remains unchanged!
expect(await tokenSilo.getTotalDepositedBdv(UNRIPE_BEAN)).to.eq(totalDepositedBdvBefore);
// verify siloExit.totalStalk() remains unchanged!
expect(await siloExit.totalStalk()).to.eq(totalStalkBefore);

})
})

37

Note that the issue only applies for new deposits of unripe tokens.

38

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Audit Scope
	Executive Summary
	Findings
	High Risk
	Failure to add modified facets and facets with modified dependencies to bips::bipSeedGauge breaks the protocol
	The previous milestone stem should be scaled for use with the new gauge point system which uses untruncated values moving forward

	Medium Risk
	Incorrect handling of decimals in LibLockedUnderlying::getPercentLockedUnderlying results in an incorrect value being returned, affecting the temperature and Bean to maxLP gaugePoint per BDV ratio updates in each subsequent call to SeasonFacet::gm when unripe asset supply < 10M
	Gauge point updates should be made considering the time-weighted average deposited LP BDV rather than instantaneous at the time of Sunrise
	Gauge point constants in InitBipSeedGauge should be scaled by the ratio of deposited BDV
	Incorrect calculation of unmigrated BDVs for use in InitBipSeedGauge::init

	Low Risk
	Missing validation in LibWhitelist::verifyTokenInLibWhitelistedTokens
	Potentially unsafe cast from negative int96 values
	Both reserves should be checked in LibWell::getWellPriceFromTwaReserves
	Potential DoS of SeasonFacet::gm due to division by zero in LibGauge::updateGaugePoints
	Small unripe token withdrawals don't decrease BDV and Stalk
	Stalk rewards don't get burned for large partial withdrawals due to unsafe downcast

	Informational
	Incorrect storage slot annotation in Storage::SiloSettings
	LibLockedUnderlying regression might not be representative of the expected behaviour
	Outdated Seed Gauge System documentation in PR and inline comments
	Duplicated code between LibChop and LibUnripe
	Outdated reference to urBEAN3CRV Convert
	Miscellaneous NatSpec and inline comment errors
	Time-weighted average reserves should be read from the Beanstalk Pump in LibWell using a try/catch block
	Use of average grown stalk per BDV is not correctly documented
	Consolidate unnecessary code duplication in ConvertFacet::_withdrawTokens

	Gas Optimization
	Break out of LibWhitelist loops early once the condition is met
	LibBytes::packAddressAndStem calculated twice with the same parameters
	LibTokenSilo::stemTipForToken calculated multiple times with same parameter
	SiloFacet::transferDeposits should only call LibSiloPermit::_spendDepositAllowance once
	Cache updated remaining amount to prevent extra storage read
	Cache recapitalized amount to prevent extra storage read

	Appendix
	Appendix A. Locked Underlying Differential Test
	Appendix B. Mainnet Rounding Error Tests

